(a)
To Find: The domain of the
(a)
Answer to Problem 59RE
The domain of the function is
Explanation of Solution
Given:
The given function is
Calculation:
Consider the given function is,
The function is defined for all the value of
(b)
To Find: The graph for the function
(b)
Explanation of Solution
Given:
The given function is
Calculation:
The graph for the given function is shown in Figure 1
Figure 1
(c)
To Find: The range and the asymptote of the graph.
(c)
Answer to Problem 59RE
The range of the function is,
Explanation of Solution
Given:
The given function is
Calculation:
Consider the given function,
The range of the above function is the set of all the real numbers that is,
Thus, the horizontalasymptotes of the given function is,
(d)
To Find: The function
(d)
Answer to Problem 59RE
The inverse of the functions is
Explanation of Solution
Given:
The given function is
Calculation:
Consider the given function,
Then,
Then, the inverse of the function is,
Take the log of both the sides and solve as,
(e)
To Find: The range of the function.
(e)
Answer to Problem 59RE
The range of the function is
Explanation of Solution
Given:
The given function is
Calculation:
Consider the given function,
The domain of the function
(f)
To Find: The graph of the function
(f)
Explanation of Solution
Given:
The inverse of the function is
Calculation:
The graph for the inverse of the function is shown in Figure 2
Figure 2
Chapter 5 Solutions
Precalculus
Additional Math Textbook Solutions
Pre-Algebra Student Edition
Elementary Statistics: Picturing the World (7th Edition)
University Calculus: Early Transcendentals (4th Edition)
Intro Stats, Books a la Carte Edition (5th Edition)
- 2. Suppose that U(x, y, z) = x² + y²+ z² represents the temperature of a 3-dimensional solid object at any point (x, y, z). Then F(x, y, z) = -KVU (x, y, z) represents the heat flow at (x, y, z) where K > 0 is called the conductivity constant and the negative sign indicates that the heat moves from higher temperature region into lower temperature region. Answer the following questions. (A) [90%] Compute the inward heat flux (i.e., the inward flux of F) across the surface z = 1 - x² - y². (B) [10%] Use the differential operator(s) to determine if the heat flow is rotational or irrotational.arrow_forwardCould you show why the answer is B Using polar coordinates and the area formulaarrow_forward1. The parametric equations x = u, y = u cos v, z = usin v, with Ou≤ 2, 0 ≤ v ≤ 2π represent the cone that is obtained by revolving (about x-axis) the line y = x (for 0 ≤ x ≤2) in the xy-plane. Answer the following questions. (A) [50%] Sketch the cone and compute its surface area, which is given by dS = [ | Ər Or ди მა × du dv with S being the cone surface and D being the projection of S on the uv-plane. (B) [50%] Suppose that the density of the thin cone is σ(x, y, z) = 0.25x gr/cm². Compute the total mass of the cone.arrow_forward
- The value of sin (2V · F) at x = 3, y = 3, z = −4, where F -0.592 -0.724 0.661 -0.113 -0.822 -0.313 0.171 0.427 = (-2x² + -4,2yz − x − 3, −5xz - 2yz), isarrow_forwardThe correct answer is C Could you show me whyarrow_forwardThe graph of f(x) is given below. Select each true statement about the continuity of f(x) at x = -4. Select all that apply: ☐ f(x) is not continuous at x = -4 because it is not defined at x = −4. ☐ f(x) is not continuous at x = -4 because lim f(x) does not exist. x-4 f(x) is not continuous at x = -4 because lim f(x) = f(−4). ☐ f(x) is continuous at x = -4. x-4 ين من طلب نہ 1 2 3 4 5 6 7arrow_forward
- The graph of f(x) is given below. Select each true statement about the continuity of f(x) at x = -1. -7-6-5 N HT Select all that apply: ☐ f(x) is not continuous at x = -1 because it is not defined at x = -1. ☐ f(x) is not continuous at -1 because lim f(x) does not exist. x-1 ☐ f(x) is not continuous at x = -1 because lim f(x) = f(−1). ☐ f(x) is continuous at x = -1. x-1 5 6 7arrow_forwardUse the shell method to find the volume of the solid generated by revolving the region bounded by the curves and lines about the y-axis. y=x², y=7-6x, x = 0, for x≥0arrow_forwardThe graph of f(x) is given below. Select all of the true statements about the continuity of f(x) at x = −3. -7-6- -5- +1 23456 1 2 3 4 5 67 Select the correct answer below: ○ f(x) is not continuous at x = f(x) is not continuous at x = f(x) is not continuous at x = f(x) is continuous at x = -3 -3 because f(-3) is not defined. -3 because lim f(x) does not exist. 2-3 -3 because lim f(x) = f(−3). 2-3arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning