Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 59EP
The air velocity in a duct is measured by a Pitot-static probe connected to a differential pressure gage. If the air is at 13.4 psia absolute and 70°F and the reading of the differential pressure gage is 0.15 psi. Determine the air velocity.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A pitot static tube is used to measure the velocity of air in a duct. The water manometer shows a reading of 8 cm. The static pressure in the duct is 9 kN/m2 and the air temperature is 320 K. The local barometer reads 740 mm of mercury. Calculate the air velocity if Cv = 0.98. Assume the gas constant for air as 287 J/kg K.
An airplane is flying at standard sea level. The measurement obtained from a Pitot tube mounted on the wing tip reads 2190 lb/ft2. What is the velocity of the airplane?
A spherical container fitted with a stirrer traps air with a volume equal to 5 cubic meters. The initial pressure of the air is 276 kPa and the initial temperature is 250 degrees Celsius. The wall of the container is thick enoughsuch that heat flow can be neglected. If the stirrer transfers 400 kJ of energy to the air, determine the final pressure (kPa) and temperature (degrees Celsius). At the top of your solution, write in bullet form all the assumptions you made in solving the problem.
Chapter 5 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 5 - Does the amount of mass entering a control volume...Ch. 5 - Define mass and volume flow rates. How are they...Ch. 5 - Name four physical quantities that are conserved...Ch. 5 - When is the flow through a control volume steady?Ch. 5 - Consider a device with one inlet and one outlet....Ch. 5 - A hair dryer is basically a duct of constant...Ch. 5 - A garden hose attached with a nozzle is used to...Ch. 5 - Air whose density is 0.082 Ibm/ft3 enters the duct...Ch. 5 - A 0.7$-m3 rigid tank initially contains air whose...Ch. 5 - Consider the flow of an incompressible Newtonian...
Ch. 5 - A desktop computer is to be cooled by a fan whose...Ch. 5 - The minimum fresh air requirement of a residential...Ch. 5 - The ventilating fan of the bathroom of a building...Ch. 5 - Air enters a nozzle steadily at 2.21 kg/m3 and 20...Ch. 5 - Air at 40°C flow steadily through the pipe shown...Ch. 5 - In climates with low night-time temperatures, an...Ch. 5 - What is mechanical energy? How does it differ from...Ch. 5 - Define turbine efficiency, generator efficiency,...Ch. 5 - What is mechanical efficiency? What does a...Ch. 5 - How is the combined pump-motor efficiency of a...Ch. 5 - Prob. 21PCh. 5 - A differential thermocouple with sensors at the...Ch. 5 - Electric power is to be generated by installing a...Ch. 5 - Consider a river flowing toward a lake at an...Ch. 5 - Express the Bernoulli equation in three different...Ch. 5 - What are the three major assumptions used in the...Ch. 5 - Define static, dynamic, and hydrostatic pressure....Ch. 5 - What is streamwise acceleration? How does it...Ch. 5 - What is stagnation pressure? Explain how it can be...Ch. 5 - Define pressure head, velocity head, and elevation...Ch. 5 - How is the location of the hydraulic grade line...Ch. 5 - Prob. 33CPCh. 5 - What is the hydraulic grade line? How does it...Ch. 5 - A glass manometer with oil as the working fluid is...Ch. 5 - The velocity of a fluid flowing in a pipe is to be...Ch. 5 - The water level of a tank on a building roof is 20...Ch. 5 - Prob. 38CPCh. 5 - Prob. 39CPCh. 5 - In a hydroelectric power plant, water enters the...Ch. 5 - A Pitot-static probe is used to measure the speed...Ch. 5 - The air velocity in the duct of a heating system...Ch. 5 - A piezometer and a Pitot tube are tapped into a...Ch. 5 - The diameter of a cylindrical water tank is D0and...Ch. 5 - A siphon pumps water from a large reservoir to a...Ch. 5 - Water flows through a horizontal pipe at a rate of...Ch. 5 - An airplane is flying at an altitude of 10.500 m....Ch. 5 - While traveling on a dirt road, the bottom of a...Ch. 5 - The water in an 8-rn-diameter, 3-rn-high...Ch. 5 - Reconsider Prob. 5-49. Determine how long it will...Ch. 5 - Air at 105 kPa and 37°C flows upward through a...Ch. 5 - Water at 20°C is siphoned from a reservoir as...Ch. 5 - The water pressure in the mains of a city at a...Ch. 5 - A pressurized tank of water has a 10-cm-diameter...Ch. 5 - Air is flowing through a venturi meter whose...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - The air velocity in a duct is measured by a...Ch. 5 - In cold climates, water pipes may freeze and burst...Ch. 5 - Prob. 61PCh. 5 - A fluid of density and viscosity flows through a...Ch. 5 - What is the minimum diameter at section (1) to...Ch. 5 - What is irreversible head loss? How is it related...Ch. 5 - What is useful pump head? How is it related to the...Ch. 5 - Consider the steady adiabatic flow of an...Ch. 5 - Consider the steady adiabatic flow of an...Ch. 5 - What is the kinetic energy correction factor? Is...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - A 3-rn-high tank filled with water has a discharge...Ch. 5 - A person is filling a knee-high bucket with water...Ch. 5 - Tater is being pumped from a large lake to a...Ch. 5 - A 15-hp (shaft) pump is used to raise water to a...Ch. 5 - Water flows at a rate of 0.040 m3/s in a...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - A hydraulic turbine has 50 m of head available at...Ch. 5 - In a hydroelectric power plant, water flows from...Ch. 5 - Reconsider Prob. 5-78E. Determine the flow rate of...Ch. 5 - A fan is to be selected to ventilate a bathroom...Ch. 5 - Water flows at a rate of 20 L/s through a...Ch. 5 - The water level in a tank is 34 ft above the...Ch. 5 - A large tank is initially filled with water 4 m...Ch. 5 - Water enters a hydraulic turbine through a...Ch. 5 - A 78-percent efficient 12-hp pump is pumping water...Ch. 5 - Water is pumped from a lower reservoir to a higher...Ch. 5 - Water in a partially filled large tank is to be...Ch. 5 - Underground water is to be pumped by a 78 percent...Ch. 5 - Reconsider Prob. 5-88. Determine the flow rate of...Ch. 5 - The velocity profile for turbulent flow in a...Ch. 5 - The demand for electric power is usually much...Ch. 5 - Prob. 92PCh. 5 - Consider a fully filled hemisphere shaped tank...Ch. 5 - The velocity of a liquid flowing in a circular...Ch. 5 - Air at 250 kgrn3 enters a nozzle that has an...Ch. 5 - The air in a 5m5-m3-m hospital room is to be...Ch. 5 - The water level in a tank is 70 ft above the...Ch. 5 - A pressurized 2-rn-diameter tank of water has a...Ch. 5 - Underground water is being pumped into a pool...Ch. 5 - Prob. 100PCh. 5 - A very large tank contains air at 102 kPa at a...Ch. 5 - Water is flowing through a Venturi meter whose...Ch. 5 - Water flows at a rate of 0.011 m3/s in a...Ch. 5 - Air flows through a pipe at a rate of 120 L/s. The...Ch. 5 - A 3-rn-high large tank is initially filled with...Ch. 5 - Reconsider Prob. 5-105. In order to dram the tank...Ch. 5 - A D0= 1 2-rn-diameter tank is initially filled...Ch. 5 - An oil pump is drawing 18 kW of electric power...Ch. 5 - A wind tunnel draws atmospheric air at 20°C and...Ch. 5 - Consider a spherical tank containing compressed...Ch. 5 - A tank with openings 1,2, and 3 is moving to left...Ch. 5 - Two dimensionally identical containers are...Ch. 5 - A circular thin plate is placed on the top of a...Ch. 5 - A pump-storage plant uses a turbine to generate...Ch. 5 - A diffuser in a pipe flow is basically a slow...Ch. 5 - Prob. 117PCh. 5 - Prob. 118PCh. 5 - Prob. 119PCh. 5 - Air enters a steady-flow compressor at 1 atm and...Ch. 5 - A 7$-m-high water body that is open to the...Ch. 5 - Prob. 122PCh. 5 - Prob. 123PCh. 5 - A hydraulic turbine is used to generate power by...Ch. 5 - The efficiency of a hydraulic turbine-generator...Ch. 5 - Which one is not an assumption involved with the...Ch. 5 - Consider incompressible, frictionless flow of a...Ch. 5 - Consider incompressible, frictionless flow of...Ch. 5 - Consider water flow in a piping network. The...Ch. 5 - The static and stagnation pressures of a fluid in...Ch. 5 - The static and stagnation pressures of a fluid in...Ch. 5 - The difference between the heights of energy grade...Ch. 5 - Water at 120 kPa (gage) is flowing in a horizontal...Ch. 5 - Water is withdrawn a the bottom of a large tank...Ch. 5 - Water at 80 kPa (gage) enters a horizontal pipe at...Ch. 5 - Liquid ethanol (p = 783 kg/m3) at a pressure of...Ch. 5 - Seawater is to be pumped into a large tank at a...Ch. 5 - An adiabatic pump is used to increase the pressure...Ch. 5 - The shaft power from a 90 percent-efficient...Ch. 5 - Using a 1are bucket whose volume is known and...Ch. 5 - Your company is setting up an experiment that...Ch. 5 - Computer-aided designs, the use of better...Ch. 5 - Using a handheld bicycle pump to generate an air...Ch. 5 - Using a flexible drinking straw and a ruler,...Ch. 5 - The power generated by a wind turbine is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Determine the absolute pressure of water at a point flowing in the pipe when the pressure head measured at that point reads 3.7 m. Take Atmospheric pressure as 1 bar. 0.6370 bar 0.3630 bar O 1.3630 bar O1.1370 bararrow_forwardThe Super Soaker XP30 is a marvel of hydraulic dispersion weaponry. By pumping on the handle, you charge the chamber to high pressure. The pressure is maintained until you pull the trigger at which point the water (? = 1000 kg/m3) is released at high velocity.You have charged your pressure chamber to an absolute pressure of P1 = 697500 Pascals, much higher than today's outside air pressure of 101300 Pascals. The pressure chamber is location at a height of y1 = 0.103 meters above the exit point. The exit point has a small opening with radius r = 0.0033 meters.Determine all the following:The velocity at which the water exits the Super Soaker: v2 = m/sThe mass flow rate through the exit: kg/secThe volume flow rate through the exit: m3/secNOTE: You may treat the water chamber as a "tank" and approximate the water velocity there to be zero.arrow_forwardThe Super Soaker XP30 is a marvel of hydraulic dispersion weaponry. By pumping on the handle, you charge the chamber to high pressure. The pressure is maintained until you pull the trigger at which point the water (? = 1000 kg/m3) is released at high velocity. You have charged your pressure chamber to an absolute pressure of P1 = 675500 Pascals, much higher than today's outside air pressure of 101300 Pascals. The pressure chamber is location at a height of y1 = 0.117 meters above the exit point. The exit point has a small opening with radius r = 0.0038 meters. Determine all the following: a) The velocity at which the water exits the Super Soaker: v2 = m/s b) The mass flow rate through the exit: kg/sec c) The volume flow rate through the exit: m3/secarrow_forward
- A pitot static tube is used to measure the velocity of air in a duct. The watermanometer shows a reading of 8 cm. The static pressure in the duct is 9 kN/m2and the air temperature is 320 K. The local barometer reads 740 mm of mercury.Calculate the air velocity if Cv = 0.98. Assume the gas constant for air as 287J/kg K.arrow_forwardA pressure measurement device indicates that the pressure in a gas pipeline is 77 kPa. If the absolute pressure is 175 kPa, what is the local ambient pressurearrow_forwardRefrigerationarrow_forward
- Q1/Air at 110 kPa and 50°C flows upward .The pressure change across the reducer is measured by a water manometer. The elevation difference between the two points on the pipe where the two arms of the manometer are attached is 0.2 m. Determine the differential height between the fluid levels of the two arms of the manometer Dia=4cm Dia=6cm Airarrow_forwardPlease indicate the given, the required and the illustration. An open cylindrical vessel, 3m high and 1.5m in diameter is filled with water to a depth 2.5m. In its side is a 50mm circular orifice C = 0.60 placed 300mm above the bottom of the vessel. The vessel is rotated about its own axis at 60rpm and the water allowed to escape through the orifice for a period of 3 minutes. Determine the volume (V) of water allowed to escape through the orifice in cubic meters. Answer is 1.440arrow_forwardA steam turbine carrying a full load of 46 MW uses 77.7 kg/s of steam. The turbine efficiency is 78%, and it exhausts steam at 26 mm Hg (absolute) with an enthalpy of 2310 kJ/kg. What are the temperature and pressure of the steam entering the turbine?(Note: One point for correct pair of temperature and pressure). Show the drawingarrow_forward
- A pitot-static probe is used to measure the speed of an aircraft flying at a height of 3000 m. If the differential pressure reading is 3.3 kPa, determine the speed of the aircraft.arrow_forwardAn airplane is flying at a pressure altitude of 15 km with a velocity of 619 m/s. The outside air temperature is 220 K. What is the pressure measured by a Pitot tube mounted on the nose of the airplane?arrow_forwardIf an aircraft is flying at an altitude where the actual pressure and temperature are 52870 N/m^2 and 288.7 K. Determine the altitude.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License