Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 100P
To determine
The error to estimate the range of validity for the velocity found.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A pitot static tube is used to measure the velocity of air in a duct. The water manometer shows a reading of 8 cm. The static pressure in the duct is 9 kN/m2 and the air temperature is 320 K. The local barometer reads 740 mm of mercury. Calculate the air velocity if Cv = 0.98. Assume the gas constant for air as 287 J/kg K.
A vessel contains 10 kg of water at 10 x 1 kPa (if last digit is 2 then 10 x 2 = 20 kPa).Determine specific and total internal energy, specific and total enthalpy, and specific and totalentropy. Cosider different cases/states:I. T = Tsat and x = 0II. T = Tsat and x = 0.5III. T = Tsat and x = 1IV. T = 300 ⁰CPlot these states on the Tv diagram and lable magnitudes. Refer property tables.
Solve it fast.
Chapter 5 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 5 - Does the amount of mass entering a control volume...Ch. 5 - Define mass and volume flow rates. How are they...Ch. 5 - Name four physical quantities that are conserved...Ch. 5 - When is the flow through a control volume steady?Ch. 5 - Consider a device with one inlet and one outlet....Ch. 5 - A hair dryer is basically a duct of constant...Ch. 5 - A garden hose attached with a nozzle is used to...Ch. 5 - Air whose density is 0.082 Ibm/ft3 enters the duct...Ch. 5 - A 0.7$-m3 rigid tank initially contains air whose...Ch. 5 - Consider the flow of an incompressible Newtonian...
Ch. 5 - A desktop computer is to be cooled by a fan whose...Ch. 5 - The minimum fresh air requirement of a residential...Ch. 5 - The ventilating fan of the bathroom of a building...Ch. 5 - Air enters a nozzle steadily at 2.21 kg/m3 and 20...Ch. 5 - Air at 40°C flow steadily through the pipe shown...Ch. 5 - In climates with low night-time temperatures, an...Ch. 5 - What is mechanical energy? How does it differ from...Ch. 5 - Define turbine efficiency, generator efficiency,...Ch. 5 - What is mechanical efficiency? What does a...Ch. 5 - How is the combined pump-motor efficiency of a...Ch. 5 - Prob. 21PCh. 5 - A differential thermocouple with sensors at the...Ch. 5 - Electric power is to be generated by installing a...Ch. 5 - Consider a river flowing toward a lake at an...Ch. 5 - Express the Bernoulli equation in three different...Ch. 5 - What are the three major assumptions used in the...Ch. 5 - Define static, dynamic, and hydrostatic pressure....Ch. 5 - What is streamwise acceleration? How does it...Ch. 5 - What is stagnation pressure? Explain how it can be...Ch. 5 - Define pressure head, velocity head, and elevation...Ch. 5 - How is the location of the hydraulic grade line...Ch. 5 - Prob. 33CPCh. 5 - What is the hydraulic grade line? How does it...Ch. 5 - A glass manometer with oil as the working fluid is...Ch. 5 - The velocity of a fluid flowing in a pipe is to be...Ch. 5 - The water level of a tank on a building roof is 20...Ch. 5 - Prob. 38CPCh. 5 - Prob. 39CPCh. 5 - In a hydroelectric power plant, water enters the...Ch. 5 - A Pitot-static probe is used to measure the speed...Ch. 5 - The air velocity in the duct of a heating system...Ch. 5 - A piezometer and a Pitot tube are tapped into a...Ch. 5 - The diameter of a cylindrical water tank is D0and...Ch. 5 - A siphon pumps water from a large reservoir to a...Ch. 5 - Water flows through a horizontal pipe at a rate of...Ch. 5 - An airplane is flying at an altitude of 10.500 m....Ch. 5 - While traveling on a dirt road, the bottom of a...Ch. 5 - The water in an 8-rn-diameter, 3-rn-high...Ch. 5 - Reconsider Prob. 5-49. Determine how long it will...Ch. 5 - Air at 105 kPa and 37°C flows upward through a...Ch. 5 - Water at 20°C is siphoned from a reservoir as...Ch. 5 - The water pressure in the mains of a city at a...Ch. 5 - A pressurized tank of water has a 10-cm-diameter...Ch. 5 - Air is flowing through a venturi meter whose...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - The air velocity in a duct is measured by a...Ch. 5 - In cold climates, water pipes may freeze and burst...Ch. 5 - Prob. 61PCh. 5 - A fluid of density and viscosity flows through a...Ch. 5 - What is the minimum diameter at section (1) to...Ch. 5 - What is irreversible head loss? How is it related...Ch. 5 - What is useful pump head? How is it related to the...Ch. 5 - Consider the steady adiabatic flow of an...Ch. 5 - Consider the steady adiabatic flow of an...Ch. 5 - What is the kinetic energy correction factor? Is...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - A 3-rn-high tank filled with water has a discharge...Ch. 5 - A person is filling a knee-high bucket with water...Ch. 5 - Tater is being pumped from a large lake to a...Ch. 5 - A 15-hp (shaft) pump is used to raise water to a...Ch. 5 - Water flows at a rate of 0.040 m3/s in a...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - A hydraulic turbine has 50 m of head available at...Ch. 5 - In a hydroelectric power plant, water flows from...Ch. 5 - Reconsider Prob. 5-78E. Determine the flow rate of...Ch. 5 - A fan is to be selected to ventilate a bathroom...Ch. 5 - Water flows at a rate of 20 L/s through a...Ch. 5 - The water level in a tank is 34 ft above the...Ch. 5 - A large tank is initially filled with water 4 m...Ch. 5 - Water enters a hydraulic turbine through a...Ch. 5 - A 78-percent efficient 12-hp pump is pumping water...Ch. 5 - Water is pumped from a lower reservoir to a higher...Ch. 5 - Water in a partially filled large tank is to be...Ch. 5 - Underground water is to be pumped by a 78 percent...Ch. 5 - Reconsider Prob. 5-88. Determine the flow rate of...Ch. 5 - The velocity profile for turbulent flow in a...Ch. 5 - The demand for electric power is usually much...Ch. 5 - Prob. 92PCh. 5 - Consider a fully filled hemisphere shaped tank...Ch. 5 - The velocity of a liquid flowing in a circular...Ch. 5 - Air at 250 kgrn3 enters a nozzle that has an...Ch. 5 - The air in a 5m5-m3-m hospital room is to be...Ch. 5 - The water level in a tank is 70 ft above the...Ch. 5 - A pressurized 2-rn-diameter tank of water has a...Ch. 5 - Underground water is being pumped into a pool...Ch. 5 - Prob. 100PCh. 5 - A very large tank contains air at 102 kPa at a...Ch. 5 - Water is flowing through a Venturi meter whose...Ch. 5 - Water flows at a rate of 0.011 m3/s in a...Ch. 5 - Air flows through a pipe at a rate of 120 L/s. The...Ch. 5 - A 3-rn-high large tank is initially filled with...Ch. 5 - Reconsider Prob. 5-105. In order to dram the tank...Ch. 5 - A D0= 1 2-rn-diameter tank is initially filled...Ch. 5 - An oil pump is drawing 18 kW of electric power...Ch. 5 - A wind tunnel draws atmospheric air at 20°C and...Ch. 5 - Consider a spherical tank containing compressed...Ch. 5 - A tank with openings 1,2, and 3 is moving to left...Ch. 5 - Two dimensionally identical containers are...Ch. 5 - A circular thin plate is placed on the top of a...Ch. 5 - A pump-storage plant uses a turbine to generate...Ch. 5 - A diffuser in a pipe flow is basically a slow...Ch. 5 - Prob. 117PCh. 5 - Prob. 118PCh. 5 - Prob. 119PCh. 5 - Air enters a steady-flow compressor at 1 atm and...Ch. 5 - A 7$-m-high water body that is open to the...Ch. 5 - Prob. 122PCh. 5 - Prob. 123PCh. 5 - A hydraulic turbine is used to generate power by...Ch. 5 - The efficiency of a hydraulic turbine-generator...Ch. 5 - Which one is not an assumption involved with the...Ch. 5 - Consider incompressible, frictionless flow of a...Ch. 5 - Consider incompressible, frictionless flow of...Ch. 5 - Consider water flow in a piping network. The...Ch. 5 - The static and stagnation pressures of a fluid in...Ch. 5 - The static and stagnation pressures of a fluid in...Ch. 5 - The difference between the heights of energy grade...Ch. 5 - Water at 120 kPa (gage) is flowing in a horizontal...Ch. 5 - Water is withdrawn a the bottom of a large tank...Ch. 5 - Water at 80 kPa (gage) enters a horizontal pipe at...Ch. 5 - Liquid ethanol (p = 783 kg/m3) at a pressure of...Ch. 5 - Seawater is to be pumped into a large tank at a...Ch. 5 - An adiabatic pump is used to increase the pressure...Ch. 5 - The shaft power from a 90 percent-efficient...Ch. 5 - Using a 1are bucket whose volume is known and...Ch. 5 - Your company is setting up an experiment that...Ch. 5 - Computer-aided designs, the use of better...Ch. 5 - Using a handheld bicycle pump to generate an air...Ch. 5 - Using a flexible drinking straw and a ruler,...Ch. 5 - The power generated by a wind turbine is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider the following schematics for a sudden expansion in a pipe.(a) Using the mass and momentum balances to show that there is an overall increaseof pressure equal to the equation in the image.(b) Use energy balance to show that the frictional dissipation is like the equation shown in the image(c) For a constant u1 and A1, show that the pressure rise (P2 - P1) is a maximumwhen the diameter of the larger pipe is √2 times the fixed diameter of the smaller pipe,i.e., A2 = 2A1.arrow_forwardAn orifice meter is to be installed in a 12 cm ductile iron pipe carrying water at 27oC. A mercury manometer is to be used to measure the pressure difference across the orifice when the expected velocity is 3.2 m/s. The manometer scale reads 12 mm Hg. Determine the appropriate diameter of the orifice. The density of the manometer fluid is 850 Kg/m3 while the density of water at 27oC is 993 Kg/m3. Assume C to be 0.61. Answer: 0.1204 marrow_forward(1) Given the working form of the Bernoulli equation as v2 + gz + dW - F dm Where s is the friction heating per unit mass dQ F = Au dm Given also that friction heating in laminar flow of Newtonian fluids in circular pipes is given as -AP F = = -gAz = Q Ax µ 128 Ax is change in the x-direction. A typical capillary viscometer has a large-diameter reservoir and a long, small diameter, vertical tube. The sample is placed in the reservoir and the flow rate due to gravity is measured. The tube is 0.1 m long and has a 1 mm ID. The height of the fluid in the reservoir above the inlet to the tube is 0.02 m. The fluid being tested has a density of 1050 kg / m'. The flow rate is 10* m³ / s. What is the viscosity of the fluid? Typical capillary viscometerarrow_forward
- An airplane is flying at standard sea level. The measurement obtained from a Pitot tube mounted on the wing tip reads 2190 lb/ft2. What is the velocity of the airplane?arrow_forwardA boiler requires 100 000 m3/hr of standard air. The mechanical efficiency of fan to be installed is 70%. Determine the size of driving motor needed assuming fan can deliver a pressure head of 160mm of water and outlet velocity of 20m/s. ANSWER: 60 kwarrow_forwardIn the tank-pipe-tank system given in the figure, water flows from A to C in horizontal pipes. Darcy friction factor in A-B pipe is 0.040, pipe diameter is 0.5m, pipe length is 1km and speed is 2m / s. Darcy friction factor in B-C pipe is 0.015, pipe diameter is 1.2m, pipe length is 20km. The gravitational acceleration is 9.81m/s?. There is no operational hydraulic head at point C. Which of the following is the minimum required vertical elevation between free water surfaces, H for running this system? H fAB fBC DBC DAB V AB A В LAB LBCarrow_forward
- Water flows through a horizontal pipe at a rate of 0.01 m Is. The pipe consists of two sections of diameters 5 cm and 2 cm with a smooth reducing section. The pressure difference between the two pipe sections is measured by a fluid manometer that has S=5.5. Neglecting the viscous effects, determine the differential height of fluid manometer h (m) between the two pipe sections. 5 cm 2 cmarrow_forwardtotal pressure against which the fan will operate in cm of water? Problem 3: At 1.2 kg/m air density, a fan develops a brake power of 100kW. If it operates at 98Kpa and 32°C with the same speed, what is the new brake power of the fan? Problem 4:arrow_forwardWhen measuring small pressure differences with a manometer, one arm of the manometer may be inclined to improve the accuracy of the reading. (The pressure difference is still proportional to the vertical distance and not the actual length of ghr fluid along the tube.) The air pressure in a circular duct is to be measured using a manometer whose open arm is inclined 25 degrees from horizontal. The density of the fluid in the manometer is 900 kg/m³, and the vertical distance between the fluid levels in the two arms of the manometer is 7.8 inches. Determine the gauge pressure of the air in the duct and the length of the fluid column in the inclined arm above the fluid level in the vertical arm.arrow_forward
- Air fills a 2-m-diameter balloon at 20ºC and 5 kPa gage. Additional air is forced into the balloon until it reaches 8 m in diameter at a gage pressure of 8 kPa, while the temperature remains constant. The added mass is nearest:arrow_forwardIn typical jet-engine testings, a static thrust stand similar to the one shown below is used to mount the engine. In engine testing, pressure is usually expressed in gauge pressure. At the engine inlet, air is steadily introduced, and its cross-sectional area is 1.2 m². The inlet condition is given by 250 m/s, 50 kPa (gauge) and -50°C. The nozzle-exhaust gas has a velocity of 550 m/s, and its absolute pressure is 101 kPa, the same as the atmospheric pressure. (a) Estimate the thrust force applied to the stand during the engine testing. Assume that the incoming air has the same mass flow rate as the exhaust gas. (b) Repeat (a) when fuel supplied to the engine is taken into account. The fuel mass flow rate into the engine is equal to 2% of the mass flow rate of incoming air. Which thrust force is likely to provide more accurate estimation? 250 m/s 50 kPa -50°C Jet engine Open atmosphere 550 m/s 0 kPa Static thrust stand Thrustarrow_forwardIn cold climates, water pipes may freeze and burst if proper precautions are not taken. In such an occurrence, the exposed part of a pipe on the ground ruptures, and water shoots up to 55 m. Estimate the gage pressure of water in the pipe. State your assumptions and discuss if the actual pressure is more or less than the value you predictedarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License