Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 139P
The shaft power from a 90 percent-efficient turbine is 500 kW. If the mass flow rate through the turbine is 440 kg/s, the extracted head removed from the fluid by the turbine is (a) 44.0 m
(b) 49.5
(c) 142 m
(d) 129 in
(e)98.5m
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The motor of a pump consumes 1.05 hp
of electricity. The pump increases the
pressure of water from 120 kPa to 1100
kPa at a rate of 35 L/min. If the motor
efficiency is 94 percent, the pump
efficiency is
(a) 0.75
(b) 0.78
(c) 0.82
(d) 0.85
(e) 0.88
A pump is used to increase the pressure of water from 100 kPa to 900 kPa at a rate of 160 L/min. If the shaft power input to the pump is 3 kW, the efficiency of the pump is (a) 0.532 (b) 0.660 (c) 0.711 (d ) 0.747 (e) 0.855
Water enters the pump of a steam power plant at 15 kPa and 50°C at a rate of 0.15 m3 /s. The diameter of the pipe at the pump inlet is 0.25 m. What is the net positive suction head (NPSH) at the pump inlet? (a) 1.70 m (b) 1.49 m (c) 1.26 m (d) 0.893 m (e) 0.746 m
Chapter 5 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 5 - Does the amount of mass entering a control volume...Ch. 5 - Define mass and volume flow rates. How are they...Ch. 5 - Name four physical quantities that are conserved...Ch. 5 - When is the flow through a control volume steady?Ch. 5 - Consider a device with one inlet and one outlet....Ch. 5 - A hair dryer is basically a duct of constant...Ch. 5 - A garden hose attached with a nozzle is used to...Ch. 5 - Air whose density is 0.082 Ibm/ft3 enters the duct...Ch. 5 - A 0.7$-m3 rigid tank initially contains air whose...Ch. 5 - Consider the flow of an incompressible Newtonian...
Ch. 5 - A desktop computer is to be cooled by a fan whose...Ch. 5 - The minimum fresh air requirement of a residential...Ch. 5 - The ventilating fan of the bathroom of a building...Ch. 5 - Air enters a nozzle steadily at 2.21 kg/m3 and 20...Ch. 5 - Air at 40°C flow steadily through the pipe shown...Ch. 5 - In climates with low night-time temperatures, an...Ch. 5 - What is mechanical energy? How does it differ from...Ch. 5 - Define turbine efficiency, generator efficiency,...Ch. 5 - What is mechanical efficiency? What does a...Ch. 5 - How is the combined pump-motor efficiency of a...Ch. 5 - Prob. 21PCh. 5 - A differential thermocouple with sensors at the...Ch. 5 - Electric power is to be generated by installing a...Ch. 5 - Consider a river flowing toward a lake at an...Ch. 5 - Express the Bernoulli equation in three different...Ch. 5 - What are the three major assumptions used in the...Ch. 5 - Define static, dynamic, and hydrostatic pressure....Ch. 5 - What is streamwise acceleration? How does it...Ch. 5 - What is stagnation pressure? Explain how it can be...Ch. 5 - Define pressure head, velocity head, and elevation...Ch. 5 - How is the location of the hydraulic grade line...Ch. 5 - Prob. 33CPCh. 5 - What is the hydraulic grade line? How does it...Ch. 5 - A glass manometer with oil as the working fluid is...Ch. 5 - The velocity of a fluid flowing in a pipe is to be...Ch. 5 - The water level of a tank on a building roof is 20...Ch. 5 - Prob. 38CPCh. 5 - Prob. 39CPCh. 5 - In a hydroelectric power plant, water enters the...Ch. 5 - A Pitot-static probe is used to measure the speed...Ch. 5 - The air velocity in the duct of a heating system...Ch. 5 - A piezometer and a Pitot tube are tapped into a...Ch. 5 - The diameter of a cylindrical water tank is D0and...Ch. 5 - A siphon pumps water from a large reservoir to a...Ch. 5 - Water flows through a horizontal pipe at a rate of...Ch. 5 - An airplane is flying at an altitude of 10.500 m....Ch. 5 - While traveling on a dirt road, the bottom of a...Ch. 5 - The water in an 8-rn-diameter, 3-rn-high...Ch. 5 - Reconsider Prob. 5-49. Determine how long it will...Ch. 5 - Air at 105 kPa and 37°C flows upward through a...Ch. 5 - Water at 20°C is siphoned from a reservoir as...Ch. 5 - The water pressure in the mains of a city at a...Ch. 5 - A pressurized tank of water has a 10-cm-diameter...Ch. 5 - Air is flowing through a venturi meter whose...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - The air velocity in a duct is measured by a...Ch. 5 - In cold climates, water pipes may freeze and burst...Ch. 5 - Prob. 61PCh. 5 - A fluid of density and viscosity flows through a...Ch. 5 - What is the minimum diameter at section (1) to...Ch. 5 - What is irreversible head loss? How is it related...Ch. 5 - What is useful pump head? How is it related to the...Ch. 5 - Consider the steady adiabatic flow of an...Ch. 5 - Consider the steady adiabatic flow of an...Ch. 5 - What is the kinetic energy correction factor? Is...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - A 3-rn-high tank filled with water has a discharge...Ch. 5 - A person is filling a knee-high bucket with water...Ch. 5 - Tater is being pumped from a large lake to a...Ch. 5 - A 15-hp (shaft) pump is used to raise water to a...Ch. 5 - Water flows at a rate of 0.040 m3/s in a...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - A hydraulic turbine has 50 m of head available at...Ch. 5 - In a hydroelectric power plant, water flows from...Ch. 5 - Reconsider Prob. 5-78E. Determine the flow rate of...Ch. 5 - A fan is to be selected to ventilate a bathroom...Ch. 5 - Water flows at a rate of 20 L/s through a...Ch. 5 - The water level in a tank is 34 ft above the...Ch. 5 - A large tank is initially filled with water 4 m...Ch. 5 - Water enters a hydraulic turbine through a...Ch. 5 - A 78-percent efficient 12-hp pump is pumping water...Ch. 5 - Water is pumped from a lower reservoir to a higher...Ch. 5 - Water in a partially filled large tank is to be...Ch. 5 - Underground water is to be pumped by a 78 percent...Ch. 5 - Reconsider Prob. 5-88. Determine the flow rate of...Ch. 5 - The velocity profile for turbulent flow in a...Ch. 5 - The demand for electric power is usually much...Ch. 5 - Prob. 92PCh. 5 - Consider a fully filled hemisphere shaped tank...Ch. 5 - The velocity of a liquid flowing in a circular...Ch. 5 - Air at 250 kgrn3 enters a nozzle that has an...Ch. 5 - The air in a 5m5-m3-m hospital room is to be...Ch. 5 - The water level in a tank is 70 ft above the...Ch. 5 - A pressurized 2-rn-diameter tank of water has a...Ch. 5 - Underground water is being pumped into a pool...Ch. 5 - Prob. 100PCh. 5 - A very large tank contains air at 102 kPa at a...Ch. 5 - Water is flowing through a Venturi meter whose...Ch. 5 - Water flows at a rate of 0.011 m3/s in a...Ch. 5 - Air flows through a pipe at a rate of 120 L/s. The...Ch. 5 - A 3-rn-high large tank is initially filled with...Ch. 5 - Reconsider Prob. 5-105. In order to dram the tank...Ch. 5 - A D0= 1 2-rn-diameter tank is initially filled...Ch. 5 - An oil pump is drawing 18 kW of electric power...Ch. 5 - A wind tunnel draws atmospheric air at 20°C and...Ch. 5 - Consider a spherical tank containing compressed...Ch. 5 - A tank with openings 1,2, and 3 is moving to left...Ch. 5 - Two dimensionally identical containers are...Ch. 5 - A circular thin plate is placed on the top of a...Ch. 5 - A pump-storage plant uses a turbine to generate...Ch. 5 - A diffuser in a pipe flow is basically a slow...Ch. 5 - Prob. 117PCh. 5 - Prob. 118PCh. 5 - Prob. 119PCh. 5 - Air enters a steady-flow compressor at 1 atm and...Ch. 5 - A 7$-m-high water body that is open to the...Ch. 5 - Prob. 122PCh. 5 - Prob. 123PCh. 5 - A hydraulic turbine is used to generate power by...Ch. 5 - The efficiency of a hydraulic turbine-generator...Ch. 5 - Which one is not an assumption involved with the...Ch. 5 - Consider incompressible, frictionless flow of a...Ch. 5 - Consider incompressible, frictionless flow of...Ch. 5 - Consider water flow in a piping network. The...Ch. 5 - The static and stagnation pressures of a fluid in...Ch. 5 - The static and stagnation pressures of a fluid in...Ch. 5 - The difference between the heights of energy grade...Ch. 5 - Water at 120 kPa (gage) is flowing in a horizontal...Ch. 5 - Water is withdrawn a the bottom of a large tank...Ch. 5 - Water at 80 kPa (gage) enters a horizontal pipe at...Ch. 5 - Liquid ethanol (p = 783 kg/m3) at a pressure of...Ch. 5 - Seawater is to be pumped into a large tank at a...Ch. 5 - An adiabatic pump is used to increase the pressure...Ch. 5 - The shaft power from a 90 percent-efficient...Ch. 5 - Using a 1are bucket whose volume is known and...Ch. 5 - Your company is setting up an experiment that...Ch. 5 - Computer-aided designs, the use of better...Ch. 5 - Using a handheld bicycle pump to generate an air...Ch. 5 - Using a flexible drinking straw and a ruler,...Ch. 5 - The power generated by a wind turbine is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A single stage impulse turbine with a diameter of 120 cm runs at 3000 rpm. If the blade speed ratio is 0.42, determine the inlet velocity of steam.arrow_forwardA certain 15-Kw pump running at 1600 rpm has an inlet diameter of 20cm and the discharge line is 12 cm in diameter. The output from th pump is 2800 liters/min of 20C and the centerline of the pump discharge is 1.5 meter above the centerline of the intake pipe. Determine the efficiency of pump. Please show complete solutions and formulas used. Show schematic diagram too.arrow_forwardAt the Niagara Falls generating station, the water drops 102 m from the intake pipes atthe top of the falls to the turbines below. Calculate the power generated by each tonneof water (1 tonne = 1000 kg) that flows through the station every second. Assume anefficiency of 75 %.arrow_forward
- The brake horsepower and water horsepower of a pump are determined to be 15 kW and 12 kW, respectively. If the flow rate of water to the pump under these conditions is 0.05 m3/s, the total head loss of the pump is (a) 11.5 m (b) 9.3 m (c) 7.7 m (d) 6.1 m (e) 4.9 marrow_forwardWater at 60°F flows from a lake through 500 ft of 4-in ID cast iron pipe at a water turbine 250 ft below the surface of the lake. After flowing through the turbine, the water is discharged into the atmosphere through a horizontal 50 ft section of the same pipe. The turbine power output is 10 hp when the water in the discharge pipe is flowing at 5 ft/s. If the turbine were by passed, what would be the mass flowrate of water through the 500 ft of 4in pipe. O 45 lb/s 37 Ib/s O 52 Ib/s 29 Ib/sarrow_forwardanswer the questionarrow_forward
- 1. A water from Agno River is pumped at 13.3 L/s using a submerged pump at an efficiency of 78% that is discharged to a swimming pool in Itogon which has a free surface of 30 m above the Agno River water level. The pipe that was used has a diameter of 7 cm on the suction line and 5 cm on the discharge line from the pump. Assuming that the elevation difference between the pump inlet and outlet and the effect of the kinetic energy correction factors and frictional losses in piping are negligible, calculate for the following a) Power requirement by the pump in kW b) Pressure difference across the pump c) Pumping cost/day(24 hour) if the electricity cost is P2.00/kW-hrarrow_forwardIn a hydroelectric station, water is available at the rate of 175 m³/s under a head of 18 m. If the available turbines run at a speed of 150 rpm with overall efficiency of 82 per cent, find the number of turbines of the same size required in case of (a) Francis turbine with maximum specific speed of 460 (b) Kaplan turbine with maximum specific speed of 350.arrow_forwardA pump takes water at 60°F from a large reservoir and delivers it to the bottom of an open elevated tank 25 ft above the reservoir surface through a 3 inch ID pipe. The inlet to the pump is located 10 ft below the water surface, and the water level in the tank is constant at 160 ft above the reservoir surface. The pump delivers 150 gal/min. If the total loss of energy due to friction in the piping system is 35 ft·lbf/lb. The pump and its motor have an overall efficiency of 55 %. i. Determine Delta Z (Z2 - Z1) in ft. ii. What is the actual shaft work needed for this particular mass flow rate in (ft-lbf)/s. iii. What is the mass flow rate of the water in lbm/s?arrow_forward
- A pump takes water at 60°F from a large reservoir and delivers it to the bottom of an open elevated tank 25 ft above the reservoir surface through a 3 inch ID pipe. The inlet to the pump is located 10 ft below the water surface, and the water level in the tank is constant at 160 ft above the reservoir surface. The pump delivers 150 gal/min. If the total loss of energy due to friction in the piping system is 35 ft·lbf/lb. The pump and its motor have an overall efficiency of 55 %. i.Let us set our first point at the surface of the large reservoir, and the second point at the surface of the open elevated tank. Determine the velocity of the water at point 1 in ft/s. ii.What is the density of water at the conditions stated in lb/ft3? iii.If 1 horsepower is equivalent to 500 (ft-lbf)/s, the pump should be able to supply how much hp?arrow_forwardA pump takes water at 60°F from a large reservoir and delivers it to the bottom of an open elevated tank 25 ft above the reservoir surface through a 3 inch ID pipe. The inlet to the pump is located 10 ft below the water surface, and the water level in the tank is constant at 160 ft above the reservoir surface. The pump delivers 150 gal/min. If the total loss of energy due to friction in the piping system is 35 ft·lbf/lb. The pump and its motor have an overall efficiency of 55 %. answer the ff: i. Determine the velocity of the water at point 2. ii. Reynolds number for the flow. iii. A pump efficiency of 55% means that the theoretical work needed for the process is 55% of the actual work needed. In other words, 55% more shaft work is necessary. Determine the theoretical shaft work required in foot-pound force per pound mass.arrow_forwardA pump takes water at 60°F from a large reservoir and delivers it to the bottom of an open elevated tank 25 ft above the reservoir surface through a 3 inch ID pipe. The inlet to the pump is located 10 ft below the water surface, and the water level in the tank is constant at 160 ft above the reservoir surface. The pump delivers 150 gal/min. If the total loss of energy due to friction in the piping system is 35 ft·lbf/lb. The pump and its motor have an overall efficiency of 55 %. a. Assuming that the large open reservoir is open to the atmosphere as well, what is the mechanical energy balance eq for the system? b. What is the Reynolds number for the flow ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license