Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 107P
Reconsider Prob. 5-105. In order to dram the tank faster, a pump is installed near the tank exit. Determine the pump head input necessary to establish an average water velocity of 6.5 m/s when the tank is full.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The force that drives the flow of fluids is the pressure difference; a pump works by raising thepressure of a fluid (converting it into mechanical work of its axis and energy of flow). It is determined thatA gasoline pump consumes 3.8 KW of electrical power when it is working. If the difference ofpressures between pump discharge and suction is 7 KPa, and the changes in speed and head aredespicable.Determine the maximum possible volumetric flow rate of the gasoline.
(see img)
6-22 A 90° elbaw is used to direct water flow at a rate of
25 kgis in a horizontal pipe upward. The diameter of the
entire elbow is 10 cm. The elbow discharges water into the
atmosphere, and thus the pressure at the exit is the local
atmospheric pressure. The elevation difference between the
centers of the exit and the inlet of the elbow is 35 cm. The
weight of the elbow and the water in it is considered to be
negligible. Determine (a) the gage pressure at the center of
the inlet of the elbow and (b) the anchoring force needed to
hold the elbow in place. Take the momentum-flux correction
factor to be 1.03.
35 cm
Water
25 kg/s
Water (p = 1000
kg
m3'H= 10-3
R) flows in a horizontal constant-area pipe; the pipe cross
ms
1.
section area of 0.1 m?. At the pipe inlet, a pump is installed and at the outlet, the pressure is
atmospheric. Determine the pump power when the pipe length is 10 meter and
a.
When the velocity is 0.01 m/s
b. When the velocity is 0.1 m/s and the pipe is smooth
When the velocity is 0.1 m/s and the pipe equivalent roughness is 0.1 mm (you may use
Moody chart here)
d. When the pipe is smooth and vertical and the velocity is 0.1 m/s
С.
Chapter 5 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 5 - Does the amount of mass entering a control volume...Ch. 5 - Define mass and volume flow rates. How are they...Ch. 5 - Name four physical quantities that are conserved...Ch. 5 - When is the flow through a control volume steady?Ch. 5 - Consider a device with one inlet and one outlet....Ch. 5 - A hair dryer is basically a duct of constant...Ch. 5 - A garden hose attached with a nozzle is used to...Ch. 5 - Air whose density is 0.082 Ibm/ft3 enters the duct...Ch. 5 - A 0.7$-m3 rigid tank initially contains air whose...Ch. 5 - Consider the flow of an incompressible Newtonian...
Ch. 5 - A desktop computer is to be cooled by a fan whose...Ch. 5 - The minimum fresh air requirement of a residential...Ch. 5 - The ventilating fan of the bathroom of a building...Ch. 5 - Air enters a nozzle steadily at 2.21 kg/m3 and 20...Ch. 5 - Air at 40°C flow steadily through the pipe shown...Ch. 5 - In climates with low night-time temperatures, an...Ch. 5 - What is mechanical energy? How does it differ from...Ch. 5 - Define turbine efficiency, generator efficiency,...Ch. 5 - What is mechanical efficiency? What does a...Ch. 5 - How is the combined pump-motor efficiency of a...Ch. 5 - Prob. 21PCh. 5 - A differential thermocouple with sensors at the...Ch. 5 - Electric power is to be generated by installing a...Ch. 5 - Consider a river flowing toward a lake at an...Ch. 5 - Express the Bernoulli equation in three different...Ch. 5 - What are the three major assumptions used in the...Ch. 5 - Define static, dynamic, and hydrostatic pressure....Ch. 5 - What is streamwise acceleration? How does it...Ch. 5 - What is stagnation pressure? Explain how it can be...Ch. 5 - Define pressure head, velocity head, and elevation...Ch. 5 - How is the location of the hydraulic grade line...Ch. 5 - Prob. 33CPCh. 5 - What is the hydraulic grade line? How does it...Ch. 5 - A glass manometer with oil as the working fluid is...Ch. 5 - The velocity of a fluid flowing in a pipe is to be...Ch. 5 - The water level of a tank on a building roof is 20...Ch. 5 - Prob. 38CPCh. 5 - Prob. 39CPCh. 5 - In a hydroelectric power plant, water enters the...Ch. 5 - A Pitot-static probe is used to measure the speed...Ch. 5 - The air velocity in the duct of a heating system...Ch. 5 - A piezometer and a Pitot tube are tapped into a...Ch. 5 - The diameter of a cylindrical water tank is D0and...Ch. 5 - A siphon pumps water from a large reservoir to a...Ch. 5 - Water flows through a horizontal pipe at a rate of...Ch. 5 - An airplane is flying at an altitude of 10.500 m....Ch. 5 - While traveling on a dirt road, the bottom of a...Ch. 5 - The water in an 8-rn-diameter, 3-rn-high...Ch. 5 - Reconsider Prob. 5-49. Determine how long it will...Ch. 5 - Air at 105 kPa and 37°C flows upward through a...Ch. 5 - Water at 20°C is siphoned from a reservoir as...Ch. 5 - The water pressure in the mains of a city at a...Ch. 5 - A pressurized tank of water has a 10-cm-diameter...Ch. 5 - Air is flowing through a venturi meter whose...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - The air velocity in a duct is measured by a...Ch. 5 - In cold climates, water pipes may freeze and burst...Ch. 5 - Prob. 61PCh. 5 - A fluid of density and viscosity flows through a...Ch. 5 - What is the minimum diameter at section (1) to...Ch. 5 - What is irreversible head loss? How is it related...Ch. 5 - What is useful pump head? How is it related to the...Ch. 5 - Consider the steady adiabatic flow of an...Ch. 5 - Consider the steady adiabatic flow of an...Ch. 5 - What is the kinetic energy correction factor? Is...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - A 3-rn-high tank filled with water has a discharge...Ch. 5 - A person is filling a knee-high bucket with water...Ch. 5 - Tater is being pumped from a large lake to a...Ch. 5 - A 15-hp (shaft) pump is used to raise water to a...Ch. 5 - Water flows at a rate of 0.040 m3/s in a...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - A hydraulic turbine has 50 m of head available at...Ch. 5 - In a hydroelectric power plant, water flows from...Ch. 5 - Reconsider Prob. 5-78E. Determine the flow rate of...Ch. 5 - A fan is to be selected to ventilate a bathroom...Ch. 5 - Water flows at a rate of 20 L/s through a...Ch. 5 - The water level in a tank is 34 ft above the...Ch. 5 - A large tank is initially filled with water 4 m...Ch. 5 - Water enters a hydraulic turbine through a...Ch. 5 - A 78-percent efficient 12-hp pump is pumping water...Ch. 5 - Water is pumped from a lower reservoir to a higher...Ch. 5 - Water in a partially filled large tank is to be...Ch. 5 - Underground water is to be pumped by a 78 percent...Ch. 5 - Reconsider Prob. 5-88. Determine the flow rate of...Ch. 5 - The velocity profile for turbulent flow in a...Ch. 5 - The demand for electric power is usually much...Ch. 5 - Prob. 92PCh. 5 - Consider a fully filled hemisphere shaped tank...Ch. 5 - The velocity of a liquid flowing in a circular...Ch. 5 - Air at 250 kgrn3 enters a nozzle that has an...Ch. 5 - The air in a 5m5-m3-m hospital room is to be...Ch. 5 - The water level in a tank is 70 ft above the...Ch. 5 - A pressurized 2-rn-diameter tank of water has a...Ch. 5 - Underground water is being pumped into a pool...Ch. 5 - Prob. 100PCh. 5 - A very large tank contains air at 102 kPa at a...Ch. 5 - Water is flowing through a Venturi meter whose...Ch. 5 - Water flows at a rate of 0.011 m3/s in a...Ch. 5 - Air flows through a pipe at a rate of 120 L/s. The...Ch. 5 - A 3-rn-high large tank is initially filled with...Ch. 5 - Reconsider Prob. 5-105. In order to dram the tank...Ch. 5 - A D0= 1 2-rn-diameter tank is initially filled...Ch. 5 - An oil pump is drawing 18 kW of electric power...Ch. 5 - A wind tunnel draws atmospheric air at 20°C and...Ch. 5 - Consider a spherical tank containing compressed...Ch. 5 - A tank with openings 1,2, and 3 is moving to left...Ch. 5 - Two dimensionally identical containers are...Ch. 5 - A circular thin plate is placed on the top of a...Ch. 5 - A pump-storage plant uses a turbine to generate...Ch. 5 - A diffuser in a pipe flow is basically a slow...Ch. 5 - Prob. 117PCh. 5 - Prob. 118PCh. 5 - Prob. 119PCh. 5 - Air enters a steady-flow compressor at 1 atm and...Ch. 5 - A 7$-m-high water body that is open to the...Ch. 5 - Prob. 122PCh. 5 - Prob. 123PCh. 5 - A hydraulic turbine is used to generate power by...Ch. 5 - The efficiency of a hydraulic turbine-generator...Ch. 5 - Which one is not an assumption involved with the...Ch. 5 - Consider incompressible, frictionless flow of a...Ch. 5 - Consider incompressible, frictionless flow of...Ch. 5 - Consider water flow in a piping network. The...Ch. 5 - The static and stagnation pressures of a fluid in...Ch. 5 - The static and stagnation pressures of a fluid in...Ch. 5 - The difference between the heights of energy grade...Ch. 5 - Water at 120 kPa (gage) is flowing in a horizontal...Ch. 5 - Water is withdrawn a the bottom of a large tank...Ch. 5 - Water at 80 kPa (gage) enters a horizontal pipe at...Ch. 5 - Liquid ethanol (p = 783 kg/m3) at a pressure of...Ch. 5 - Seawater is to be pumped into a large tank at a...Ch. 5 - An adiabatic pump is used to increase the pressure...Ch. 5 - The shaft power from a 90 percent-efficient...Ch. 5 - Using a 1are bucket whose volume is known and...Ch. 5 - Your company is setting up an experiment that...Ch. 5 - Computer-aided designs, the use of better...Ch. 5 - Using a handheld bicycle pump to generate an air...Ch. 5 - Using a flexible drinking straw and a ruler,...Ch. 5 - The power generated by a wind turbine is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In order to drain the tank faster, a pump is installed near thetank exit. Determine how much power input is necessary toestablish an average water velocity of 4 m/s when the tank isfull at 2 m. diameter is 10cmarrow_forwardIn order to drain the tank faster, a pump is installed near thetank exit. Determine how much power input is necessary toestablish an average water velocity of 4 m/s when the tank isfull at 2 m.arrow_forwardA turbine is placed at the bottom of a 20-m-high water body. Water flows through the turbine at a rate of 30 m3 /s. If the shaft power delivered by the turbine is 5 MW, the turbine efficiency is (a) 85% (b) 79% (c) 88% (d) 74% (e) 82%arrow_forward
- Water is being pumped from a reservoir with water surface elevation of 12 m to another reservoir at elev. 69 m at the rate of 25 L/s. The pump is located at elevation 2 m. The pipe leading from the lower reservoir to the suction side of the pump has Manning’s n=0.011 and is 15 m long and 250 mm in diameter. The pipe from the discharge side of the pump to the upper reservoir is 600 m long and 200 mm in diameter with a friction factor f=0.02. Determine the horsepower required by the pump if its efficiency is 70%.arrow_forwardWater at 20°C is pumped at a constant rate of 9 m3/h from a large reservoir resting on the floor to the open top of an experimental absorption tower. The point of discharge is 5 m above the floor, and friction losses in the 50-mm pipe from the reservoir to the tower amount to 2.5 J/kg. At what height in the reservoir must the water level be kept if the pump can deliver only 0.1 kW?The value of alpha we should use for the kinetic energy term is?arrow_forwardplzzzz help meeeearrow_forward
- The brake horsepower and water horsepower of a pump are determined to be 15 kW and 12 kW, respectively. If the flow rate of water to the pump under these conditions is 0.05 m3/s, the total head loss of the pump is (a) 11.5 m (b) 9.3 m (c) 7.7 m (d) 6.1 m (e) 4.9 marrow_forwardWrite what you understand in this example.arrow_forward1- Write what you now about Bernoulli's equation and why it is very important in our life 2- A large tank open to the atmosphere is filled with water to a height of 5 `m from the outlet tap. A tap near the bottom of the tank is now opened, and water flows out from the smooth and rounded outlet. Determine the maximum water velocity at the outlet. 3- Define Reynolds Number, and discuss why it important in water distribution system.arrow_forward
- Water flows into a sink as shown in the figure below at a rate of 0.5m^3/hr. Determine the average velocity through each of the three 1 cm diameter overflow holes if the drain is closed and the water level in the sink remains constantarrow_forwardDetermine the loss of head due to sudden enlargement in a pipe carrying 57 L/s of water which suddenly changes from a diameter of 15 cm to 20 cm. Also find the pressure difference between points before and after the change of section.arrow_forward1- A 2 m long conical tube is fixed vertically with its smaller end upwards. It carries liquid in downward direction. The flow velocities at the smaller and larger ends are 5m/s and 2m/s respectively. The 0.35(u₁-u₂)² pressure head at the smaller end is 2.5 m of liquid. If the loss of head in the tube is 2g (u, and u₂ being the velocities at the smaller and larger ends respectively). Calculate the pressure head at the larger end.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License