A square wood platform is 8 ft × 8 ft in area and rests on masonry walls (see figure). The deck of the platform is constructed of 2-in. nominal thickness tongue-and-groove planks (actual thickness 1.5 in.; sec Appendix CL) supported on two S-ft long beams. The beams have 4 in. × (i in. nominal dimensions (actual dimensions 3.5 in. × 5.5 in.). The planks arc designed to support a uniformly distributed load n ( lb/ft" i acting over the entire top surface of the platform. I be allowable bending stress for the planks is 2400 psi and the allowable shear stress is 100 psi. W ben analyzing the planks, disregard their weights and assume that their reactions are uniformly distributed over the top surfaces of the supporting beams. (a) Determine the allowable platform load Mr. (lb/ft2) based upon the bending stress in the planks. (b) Determine the allowable platform load if-. (lb/ft-) based upon the shear stress in the planks. (c) Which of the preceding values becomes the allowable load alolow on the platform? Hints: Use care in constructing the loading diagram for the planks, noting especially that the reactions are distributed loads instead of concentrated loads. Also, note that the maximum shear forces occur at the inside faces of the supporting beams.
A square wood platform is 8 ft × 8 ft in area and rests on masonry walls (see figure). The deck of the platform is constructed of 2-in. nominal thickness tongue-and-groove planks (actual thickness 1.5 in.; sec Appendix CL) supported on two S-ft long beams. The beams have 4 in. × (i in. nominal dimensions (actual dimensions 3.5 in. × 5.5 in.). The planks arc designed to support a uniformly distributed load n ( lb/ft" i acting over the entire top surface of the platform. I be allowable bending stress for the planks is 2400 psi and the allowable shear stress is 100 psi. W ben analyzing the planks, disregard their weights and assume that their reactions are uniformly distributed over the top surfaces of the supporting beams. (a) Determine the allowable platform load Mr. (lb/ft2) based upon the bending stress in the planks. (b) Determine the allowable platform load if-. (lb/ft-) based upon the shear stress in the planks. (c) Which of the preceding values becomes the allowable load alolow on the platform? Hints: Use care in constructing the loading diagram for the planks, noting especially that the reactions are distributed loads instead of concentrated loads. Also, note that the maximum shear forces occur at the inside faces of the supporting beams.
A square wood platform is 8 ft × 8 ft in area and rests on masonry walls (see figure). The deck of the platform is constructed of 2-in. nominal thickness tongue-and-groove planks (actual thickness 1.5 in.; sec Appendix CL) supported on two S-ft long beams. The beams have 4 in. × (i in. nominal dimensions (actual dimensions 3.5 in. × 5.5 in.).
The planks arc designed to support a uniformly distributed load n ( lb/ft" i acting over the entire top surface of the platform. I be allowable bending stress for the planks is 2400 psi and the allowable shear stress is 100 psi. W ben analyzing the planks, disregard their weights and assume that their reactions are uniformly distributed over the top surfaces of the supporting beams.
(a) Determine the allowable platform load Mr. (lb/ft2) based upon the bending stress in the planks.
(b) Determine the allowable platform load if-. (lb/ft-) based upon the shear stress in the planks.
(c) Which of the preceding values becomes the allowable load alolow on the platform?
Hints: Use care in constructing the loading diagram for the planks, noting especially that the reactions are distributed loads instead of concentrated loads. Also, note that the maximum shear forces occur at the inside faces of the supporting beams.
Quiz/An eccentrically loaded bracket is welded to the support as shown in Figure below. The load is static. The weld size
for weld w1 is h1 = 4mm, for w2 h2=6mm, and for w3 is h3 -6.5 mm. Determine the safety factor (S.f) for the welds.
F=29 kN. Use an AWS Electrode type (E100xx).
163 mm
133 mm
140 mm
w3
wi
E
W
X
FO
FB
F10
F11
F12
Home
Q: Consider the square of Figure below.The left face is maintained at 100°C and the top
face at 500°C, while the other two faces are exposed to an environment at1 00°C, h=10
W/m². C and k=10 W/m.°C. The block is 1 m square. Compute the temperature of the
various nodes as indicated in Figure below and the heat flows at the boundaries.
T= 500°C
Alt
Explain to me in detail how to
calculate the matrix in the Casio
calculator type (fx-991ES plus)
T= 100°C
1
2
4
7
1 m-
3
1 m
5
6
T=
100°C
8
9
Which of the following sequences converge and which diverge?
1)
a₁ = 2+(0.1)"
1-2n
2)
a =
1+2n
1/n
3
16) a =
n
In n
17) an =
n
1/n
1-5n4
3)
an
=
n² +8n³
18) an
=
√4" n
n² -2n+1
n!
20) a =
4)
an
=
106
5)
n-1
a₁ =1+(-1)"
n+1
a-(+) (1-4)
6)
=
7)
a =
2n
(-1)"+1
2n-1
21) an
=
n
-A"
1/(Inn)
3n+1
22) a =
3n-1
1/n
x"
23) a =
, x>0
2n+1
3" x 6"
24) a =
2™" xn!
2n
8)
a =
n+1
πT
1
9)
a„ = sin
+-
2
n
sin n
10) an =
n
25) a = tanh(n)
26) a =
2n-1
27) a = tan(n)
1
-sin
n
n
11) a =
2"
28) an
==
"
1
+
2"
In(n+1)
12) a =
n
(In n) 200
29) a =
n
13) a = 8/n
14) a 1+
=(1+²)"
15) an
7
n
= 10n
30) an-√√n²-n
1"1
31) adx
nix
Chapter 5 Solutions
Bundle: Mechanics Of Materials, Loose-leaf Version, 9th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.