(a)
Interpretation:
The standard potential for given cell, the standard Gibbs energy and the enthalpy of the cell has to be calculated.
Concept Introduction:
In all electrochemical cells, oxidation occurs at anode and reduction occurs at cathode.
An anode is indicated by negative sign and cathode is indicated by the positive sign.
Electrons flow in the external circuit from the anode to the cathode.
Shorthand notation is used for describing the voltaic cell which gives simple idea about the cell and the reactions occurred in the electrodes in the cell.
Shorthand notation of Zn/Cu cell is,
The | notation indicates a phase boundary where the electrode and electrolyte are in physical contact.
The || notation indicates the salt bridge.
If additional reactants are required or specific products are formed, they are written with the solution separated by a comma or a semicolon.
Oxidation: Losing electrons, increasing oxidation number. And this process is occurred in anode.
Reduction: Gaining electron, decreasing oxidation number. This process is occurred in cathode.
Cell potential can be calculated from the electrode potentials as follows,
Electrochemical cells: Both oxidation and reduction occur at the same moment in an electrochemical cell. The oxidation process occurs at the anode while the reduction process occurs at the cathode in the cell. The concentration of the electrode (anode or cathode) in the half-cells and cell potential (voltage) can be calculated with the help of Nernst equation.
(b)
Interpretation:
The standard Gibbs energy of the cell at
Concept Introduction:
Electrochemical cell is a device that is used to either produce electricity from chemical reaction or induce chemical reactions using electric energy
In all electrochemical cells, oxidation occurs at anode and reduction occurs at cathode.
An anode is indicated by negative sign and cathode is indicated by the positive sign.
Electrons flow in the external circuit from the anode to the cathode.
Shorthand notation is used for describing the voltaic cell which gives simple idea about the cell and the reactions occurred in the electrodes in the cell.
Shorthand notation of Zn/Cu cell is,
The | notation indicates a phase boundary where the electrode and electrolyte are in physical contact.
The || notation indicates the salt bridge.
If additional reactants are required or specific products are formed, they are written with the solution separated by a comma or a semicolon.
Oxidation: Losing electrons, increasing oxidation number. And this process is occurred in anode.
Reduction: Gaining electron, decreasing oxidation number. This process is occurred in cathode.
Cell potential can be calculated from the electrode potentials as follows,
Electrochemical cells: Both oxidation and reduction occur at the same moment in an electrochemical cell. The oxidation process occurs at the anode while the reduction process occurs at the cathode in the cell. The concentration of the electrode (anode or cathode) in the half-cells and cell potential (voltage) can be calculated with the help of Nernst equation.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Elements Of Physical Chemistry
- Suppose 1.76 g of magnesium acetate (Mg (CH3CO2)2) are dissolved in 140. mL of water. Find the composition of the resulting electrolyte solution. In particular, list the chemical symbols (including any charge) of each dissolved ion in the table below. List only one ion per row. mEq Then, calculate the concentration of each ion in dwrite the concentration in the second column of each row. Be sure you round your answers to the L correct number of significant digits. ion Add Row mEq L x 5arrow_forwardA pdf file of your hand drawn, stepwise mechanisms for the reactions. For each reaction in the assignment, you must write each mechanism three times (there are 10 reactions, so 30 mechanisms). (A) do the work on a tablet and save as a pdf., it is expected to write each mechanism out and NOT copy and paste the mechanism after writing it just once. Everything should be drawn out stepwise and every bond that is formed and broken in the process of the reaction, and is expected to see all relevant lone pair electrons and curved arrows.arrow_forwardNonearrow_forward
- Nonearrow_forwardDraw the structure of the product of the reaction given the IR and MS data. Spectral analysis of the product reveals: MS: M 150, M-15, M-43 CH.COCI AICI, IR: 3150-3000 cm, 2950-2850 cm and 1700 cmarrow_forwardPart II. Identify whether the two protons in blue are homotopic, enantiopic, diasteriotopic, or heterotopic. a) HO b) Bri H HH c) d) H H H Br 0arrow_forward
- Nonearrow_forwardChoose the option that is decreasing from biggest to smallest. Group of answer choices: 100 m, 10000 mm, 100 cm, 100000 um, 10000000 nm 10000000 nm, 100000 um, 100 cm, 10000 mm, 100 m 10000000 nm, 100000 um, 10000 mm, 100 cm, 100 m 100 m, 100 cm, 10000 mm, 100000 um, 10000000 nmarrow_forwardQ1. (a) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH3. Use curved arrows to show the electron movement. (b) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH4*. Use curved arrows to show the electron movement.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY