![Elements Of Physical Chemistry](https://www.bartleby.com/isbn_cover_images/9780198796701/9780198796701_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
The cell reaction, electrode half-reaction and Nernst equation for the given cell has to be written.
Concept Introduction:
Cell reaction:
The overall reaction which takes place in the cell, written on the assumption that the right hand electrode is the cathode, that is assuming that the spontaneous reaction is the reduction that occurs in the right hand compartment.
Electrode half-reaction:
On the anode half reaction, oxidation occurs. For example,
On the cathode half reaction, reduction occurs. For example,
Nernst equation:
It is an equation that relates the reduction potential of an
The Nernst equation for an electrochemical half-cell is
The Nernst equation for an electrochemical reaction (full cell)
(a)
![Check Mark](/static/check-mark.png)
Explanation of Solution
The given cell is
The half-cell reaction can be given as
Right-hand half-reaction:
Left-hand half-reaction:
The combination of right-hand half-reaction and left-hand half-reaction gives an overall cell reaction.
The common components on both sides gets cancelled. The cell reaction is given as
Nernst equation:
It is a one-electron reaction. Assuming that solutions are sufficiently dilute, the Nernst equation can be given as
(b)
Interpretation:
The cell reaction, electrode half-reaction and Nernst equation for the given cell has to be written.
Concept Introduction:
Cell reaction:
The overall reaction which takes place in the cell, written on the assumption that the right hand electrode is the cathode, that is assuming that the spontaneous reaction is the reduction that occurs in the right hand compartment.
Electrode half-reaction:
On the anode half reaction, oxidation occurs. For example,
On the cathode half reaction, reduction occurs. For example,
Nernst equation:
It is an equation that relates the reduction potential of an electrochemical reaction to the standard electrode potential, temperature and concentrations of chemical species undergoing reduction and oxidation.
The Nernst equation for an electrochemical half-cell is
The Nernst equation for an electrochemical reaction (full cell)
(b)
![Check Mark](/static/check-mark.png)
Explanation of Solution
The given cell is
The half-cell reaction can be given as
Right-hand half-reaction:
Left-hand half-reaction:
The combination of right-hand half-reaction and left-hand half-reaction gives an overall cell reaction.
Nernst equation:
It is a one-electron reaction. Assuming that solutions are sufficiently dilute, the Nernst equation can be given as
(c)
Interpretation:
The cell reaction, electrode half-reaction and Nernst equation for the given cell has to be written.
Concept Introduction:
Cell reaction:
The overall reaction which takes place in the cell, written on the assumption that the right hand electrode is the cathode, that is assuming that the spontaneous reaction is the reduction that occurs in the right hand compartment.
Electrode half-reaction:
On the anode half reaction, oxidation occurs. For example,
On the cathode half reaction, reduction occurs. For example,
Nernst equation:
It is an equation that relates the reduction potential of an electrochemical reaction to the standard electrode potential, temperature and concentrations of chemical species undergoing reduction and oxidation.
The Nernst equation for an electrochemical half-cell is
The Nernst equation for an electrochemical reaction (full cell)
(c)
![Check Mark](/static/check-mark.png)
Explanation of Solution
The given cell is
The half-cell reaction can be given as
Right-hand half-reaction:
It corresponds to the reduction of
Left-hand half-reaction:
It corresponds to the reduction of
The combination of right-hand half-reaction and left-hand half-reaction gives an overall cell reaction. By reversing and doubling the
Nernst equation:
Assuming that solutions are sufficiently dilute, the Nernst equation can be given as
(d)
Interpretation:
The cell reaction, electrode half-reaction and Nernst equation for the given cell has to be written.
Concept Introduction:
Cell reaction:
The overall reaction which takes place in the cell, written on the assumption that the right hand electrode is the cathode, that is assuming that the spontaneous reaction is the reduction that occurs in the right hand compartment.
Electrode half-reaction:
On the anode half reaction, oxidation occurs. For example,
On the cathode half reaction, reduction occurs. For example,
Nernst equation:
It is an equation that relates the reduction potential of an electrochemical reaction to the standard electrode potential, temperature and concentrations of chemical species undergoing reduction and oxidation.
The Nernst equation for an electrochemical half-cell is
The Nernst equation for an electrochemical reaction (full cell)
(d)
![Check Mark](/static/check-mark.png)
Explanation of Solution
The given cell is
The half-cell reaction can be given as
Right-hand half-reaction:
It corresponds to the reduction of
Left-hand half-reaction:
It corresponds to the reduction of
The combination of right-hand half-reaction and left-hand half-reaction gives an overall cell reaction.
Nernst equation:
Assuming that solutions are sufficiently dilute, the Nernst equation can be given as
(e)
Interpretation:
The cell reaction, electrode half-reaction and Nernst equation for the given cell has to be written.
Concept Introduction:
Cell reaction:
The overall reaction which takes place in the cell, written on the assumption that the right hand electrode is the cathode, that is assuming that the spontaneous reaction is the reduction that occurs in the right hand compartment.
Electrode half-reaction:
On the anode half reaction, oxidation occurs. For example,
On the cathode half reaction, reduction occurs. For example,
Nernst equation:
It is an equation that relates the reduction potential of an electrochemical reaction to the standard electrode potential, temperature and concentrations of chemical species undergoing reduction and oxidation.
The Nernst equation for an electrochemical half-cell is
The Nernst equation for an electrochemical reaction (full cell)
(e)
![Check Mark](/static/check-mark.png)
Explanation of Solution
The given cell is
The half-cell reaction can be given as
Right-hand half-reaction:
It corresponds to the reduction of
Left-hand half-reaction:
It corresponds to the reduction of
The combination of right-hand half-reaction and left-hand half-reaction gives an overall cell reaction.
Nernst equation:
Assuming that solutions are sufficiently dilute, the Nernst equation can be given as
(f)
Interpretation:
The cell reaction, electrode half-reaction and Nernst equation for the given cell has to be written.
Concept Introduction:
Cell reaction:
The overall reaction which takes place in the cell, written on the assumption that the right hand electrode is the cathode, that is assuming that the spontaneous reaction is the reduction that occurs in the right hand compartment.
Electrode half-reaction:
On the anode half reaction, oxidation occurs. For example,
On the cathode half reaction, reduction occurs. For example,
Nernst equation:
It is an equation that relates the reduction potential of an electrochemical reaction to the standard electrode potential, temperature and concentrations of chemical species undergoing reduction and oxidation.
The Nernst equation for an electrochemical half-cell is
The Nernst equation for an electrochemical reaction (full cell)
(f)
![Check Mark](/static/check-mark.png)
Explanation of Solution
The given cell is
The half-cell reaction can be given as
Right-hand half-reaction:
It corresponds to the reduction of
Left-hand half-reaction:
It corresponds to the reduction of
The combination of right-hand half-reaction and left-hand half-reaction gives an overall cell reaction.
Nernst equation:
Assuming that solutions are sufficiently dilute, the Nernst equation can be given as
Want to see more full solutions like this?
Chapter 5 Solutions
Elements Of Physical Chemistry
- Nonearrow_forwardNonearrow_forwardman Campus Depa (a) Draw the three products (constitutional isomers) obtained when 2-methyl-3-hexene reacts with water and a trace of H2SO4. Hint: one product forms as the result of a 1,2-hydride shift. (1.5 pts) This is the acid-catalyzed alkene hydration reaction.arrow_forward
- (6 pts - 2 pts each part) Although we focused our discussion on hydrogen light emission, all elements have distinctive emission spectra. Sodium (Na) is famous for its spectrum being dominated by two yellow emission lines at 589.0 and 589.6 nm, respectively. These lines result from electrons relaxing to the 3s subshell. a. What is the photon energy (in J) for one of these emission lines? Show your work. b. To what electronic transition in hydrogen is this photon energy closest to? Justify your answer-you shouldn't need to do numerical calculations. c. Consider the 3s subshell energy for Na - use 0 eV as the reference point for n=∞. What is the energy of the subshell that the electron relaxes from? Choose the same emission line that you did for part (a) and show your work.arrow_forwardNonearrow_forward(9 Pts) In one of the two Rare Earth element rows of the periodic table, identify an exception to the general ionization energy (IE) trend. For the two elements involved, answer the following questions. Be sure to cite sources for all physical data that you use. a. (2 pts) Identify the two elements and write their electronic configurations. b. (2 pts) Based on their configurations, propose a reason for the IE trend exception. c. (5 pts) Calculate effective nuclear charges for the last electron in each element and the Allred-Rochow electronegativity values for the two elements. Can any of these values explain the IE trend exception? Explain how (not) - include a description of how IE relates to electronegativity.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)