Concept explainers
(a)
Interpretation: The relation between given pair of compounds is to be determined.
Concept introduction: The stereogenic centers with
Enantiomer of a compound has opposite configuration at stereogenic centers. Diastereomers of a compound have at least one stereogenic centre with same configuration and at least one with opposite configuration.
Answer to Problem 5.62P
The given pair of compounds is enantiomers.
Explanation of Solution
The given pair of compounds is,
Figure 1
The given compounds have same connectivity of atoms or groups but have opposite configuration at the stereogenic centre. Hence, the given pair of compounds is enantiomers.
The given pair of compounds is enantiomers.
(b)
Interpretation: The relation between given pair of compounds is to be determined.
Concept introduction: The stereogenic centers with
Enantiomer of a compound has opposite configuration at stereogenic centers. Diastereomers of a compound have at least one stereogenic centre with same configuration and at least one with opposite configuration.
Answer to Problem 5.62P
The given pair of compounds is constitutional isomers.
Explanation of Solution
The molecular formula of both given compounds is
The given pair of compounds is constitutional isomers.
(c)
Interpretation: The relation between given pair of compounds is to be determined.
Concept introduction: The stereogenic centers with
Enantiomer of a compound has opposite configuration at stereogenic centers. Diastereomers of a compound have at least one stereogenic centre with same configuration and at least one with opposite configuration.
Answer to Problem 5.62P
The given pair of compounds is diastereomers.
Explanation of Solution
The given pair of compounds is,
Figure 2
The given compounds have one stereogenic centre with same configuration and one with opposite configuration as shown in Figure 2. Hence, the given pair of compounds is diastereomers.
The given pair of compounds is diastereomers.
(d)
Interpretation: The relation between given pair of compounds is to be determined.
Concept introduction: The stereogenic centers with
Enantiomer of a compound has opposite configuration at stereogenic centers. Diastereomers of a compound have at least one stereogenic centre with same configuration and at least one with opposite configuration.
Answer to Problem 5.62P
The given pair of compounds is not isomers of each other.
Explanation of Solution
The molecular formula of given compounds is different from the each other. The molecular formula of one is
The given pair of compounds is not isomers of each other.
(e)
Interpretation: The relation between given pair of compounds is to be determined.
Concept introduction: The stereogenic centers with
Enantiomer of a compound has opposite configuration at stereogenic centers. Diastereomers of a compound have at least one stereogenic centre with same configuration and at least one with opposite configuration.
Answer to Problem 5.62P
The given pair of compounds is enantiomers.
Explanation of Solution
The given pair of compounds is,
Figure 3
The given compounds have opposite configurations at the two stereogenic centre as shown in Figure 3. Hence, the given pair of compounds is enantiomers.
The given pair of compounds is enantiomers.
(f)
Interpretation: The relation between given pair of compounds is to be determined.
Concept introduction: The stereogenic centers with
Enantiomer of a compound has opposite configuration at stereogenic centers. Diastereomers of a compound have at least one stereogenic centre with same configuration and at least one with opposite configuration.
Answer to Problem 5.62P
The given pair of compounds is enantiomers.
Explanation of Solution
The given pair of compounds is,
Figure 4
In the given compounds,
Thus, the two compounds have opposite configurations. Hence, the given pair of compounds is enantiomers.
The given pair of compounds is enantiomers.
(g)
Interpretation: The relation between given pair of compounds is to be determined.
Concept introduction: The stereogenic centers with
Enantiomer of a compound has opposite configuration at stereogenic centers. Diastereomers of a compound have at least one stereogenic centre with same configuration and at least one with opposite configuration.
Answer to Problem 5.62P
The given pair of compounds is identical.
Explanation of Solution
The given pair of compounds is,
Figure 5
The given compounds have same connectivity and same configurations at the two stereogenic centre as shown in Figure 5. Hence, the given pair of compounds is identical.
The given pair of compounds is identical.
(h)
Interpretation: The relation between given pair of compounds is to be determined.
Concept introduction: The stereogenic centers with
Enantiomer of a compound has opposite configuration at stereogenic centers. Diastereomers of a compound have at least one stereogenic centre with same configuration and at least one with opposite configuration.
Answer to Problem 5.62P
The given pair of compounds is diastereomers.
Explanation of Solution
The given pair of compounds is,
Figure 6
The given compounds have one stereogenic centre with same configuration and one with opposite configuration as shown in Figure 6. Hence, the given pair of compounds is diastereomers.
The given pair of compounds is diastereomers.
(i)
Interpretation: The relation between given pair of compounds is to be determined.
Concept introduction: The stereogenic centers with
Enantiomer of a compound has opposite configuration at stereogenic centers. Diastereomers of a compound have at least one stereogenic centre with same configuration and at least one with opposite configuration.
Answer to Problem 5.62P
The given pair of compounds is diastereomers.
Explanation of Solution
The given pair of compounds is,
Figure 7
Two methyl groups present on the six membered ring are above the plane. However, the methyl groups of chair conformation are present trans to each other. Therefore, the given pair of compounds represents diastereomers.
The given pair of compounds is diastereomers.
(j)
Interpretation: The relation between given pair of compounds is to be determined.
Concept introduction: The stereogenic centers with
Enantiomer of a compound has opposite configuration at stereogenic centers. Diastereomers of a compound have at least one stereogenic centre with same configuration and at least one with opposite configuration.
Answer to Problem 5.62P
The given pair of compounds is constitutional isomers.
Explanation of Solution
The given pair of compounds is,
Figure 8
In the given compounds, the position of
The given pair of compounds is constitutional isomers.
Want to see more full solutions like this?
Chapter 5 Solutions
Organic Chemistry-Package(Custom)
- Nonearrow_forward16. Consider the probability distribution p(x) = ax", 0 ≤ x ≤ 1 for a positive integer n. A. Derive an expression for the constant a, to normalize p(x). B. Compute the average (x) as a function of n. C. Compute σ2 = (x²) - (x)², the variance of x, as a function of n.arrow_forward451. Use the diffusion model from lecture that showed the likelihood of mixing occurring in a lattice model with eight lattice sites: Case Left Right A B C Permeable Barrier → and show that with 2V lattice sites on each side of the permeable barrier and a total of 2V white particles and 2V black particles, that perfect de-mixing (all one color on each side of the barrier) becomes increasingly unlikely as V increases.arrow_forward
- 46. Consider an ideal gas that occupies 2.50 dm³ at a pressure of 3.00 bar. If the gas is compressed isothermally at a constant external pressure so that the final volume is 0.500 dm³, calculate the smallest value Rest can have. Calculate the work involved using this value of Rext.arrow_forwardNonearrow_forward2010. Suppose that a 10 kg mass of iron at 20 C is dropped from a heigh of 100 meters. What is the kinetics energy of the mass just before it hits the ground, assuming no air resistance? What is its speed? What would be the final temperature of the mass if all the kinetic energy at impact is transformed into internal energy? The molar heat capacity of iron is Cpp = 25.1J mol-¹ K-1 and the gravitational acceleration constant is 9.8 m s¯² |arrow_forward
- ell last during 7. Write the isotopes and their % abundance of isotopes of i) Cl ii) Br 8. Circle all the molecules that show Molecular ion peak as an odd number? c) NH2CH2CH2NH2 d) C6H5NH2 a) CH³CN b) CH3OHarrow_forwardCalsulate specific heat Dissolution of NaOH ก ง ง Mass of water in cup Final temp. of water + NaOH Initial temp. of water AT Water AH Dissolution NaOH - "CaicuraORT. AH (NaOH)=-AH( 30g (water) 29.0°C 210°C 8°C (82) 100 3.. =1003.20 Conjosarrow_forwardPlease provide throrough analysis to apply into further problems.arrow_forward
- Molecular ion peak: the peak corresponding to the intact morecure (with a positive charge) 4. What would the base peak and Molecular ion peaks when isobutane is subjected to Mass spectrometry? Draw the structures and write the molecular weights of the fragments. 5. Circle most stable cation a) tert-butyl cation b) Isopropyl cation c) Ethyl cation. d)Methyl cationarrow_forwardHow many arrangements are there of 15 indistinguishable lattice gas particles distributed on: a.V = 15 sites b.V = 16 sites c.V = 20 sitesarrow_forwardFor which element is the 3d subshell higher in energy than that 4s subshell? Group of answer choices Zr Ca V Niarrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning