
Concept explainers
(a)
Interpretation: The relation between the compounds A and B is to be determined.
Concept introduction: Newman projections are drawn to visualize the different conformations of a compound around
The stereochemistry of the compound is determined by prioritizing the groups attached to its stereogenic center. The groups are prioritized on the basis of

Answer to Problem 5.60P
Compounds A and B are identical.
Explanation of Solution
The given Newman projection A is,
Figure 1
In Newman projection, the circle represents the back carbon and the dot represents the front carbon. The back carbon is substituted by one hydroxyl, one hydrogen atom and one hydroxymethyl group and the front carbon is substituted by one hydrogen atom, one hydroxyl group and one formyl group. The skeletal structure for the given projection is,
Figure 2
In the given compound,
The given Newman projection B is,
Figure 3
In Newman projection the circle represents the back carbon and the dot represents the front carbon. The back carbon is substituted by one hydroxyl, one hydrogen atom and one hydroxymethyl group and the front carbon is substituted by one hydrogen atom, one hydroxyl group and one formyl group. The skeletal structure for the given projection is,
Figure 4
In the given compound,
Both A and B have same configuration around the stereogenic centers. Hence, compounds A and B are identical.
Compounds A and B are identical.
(b)
Interpretation: The relation between the compounds A and C is to be determined.
Concept introduction: Newman projections are drawn to visualize the different conformations of a compound around
The stereochemistry of the compound is determined by prioritizing the groups attached to its stereogenic center. The groups are prioritized on the basis of atomic number of their atoms. The group that contain atom with higher atomic number is given higher priority. Complete the circle in decreasing order of priority from

Answer to Problem 5.60P
Compounds A and C are enantiomers.
Explanation of Solution
The given Newman projection A is,
Figure 1
In Newman projection the circle represents the back carbon and the dot represents the front carbon. The back carbon is substituted by one hydroxyl, one hydrogen atom and one hydroxymethyl group and the front carbon is substituted by one hydrogen atom, one hydroxyl group and one formyl group. The skeletal structure for the given projection is,
Figure 2
In the given compound,
The given Newman projection C is,
Figure 5
In Newman projection the circle represents the back carbon and the dot represents the front carbon. The back carbon is substituted by one hydroxyl, one hydrogen atom and one hydroxymethyl group and the front carbon is substituted by one hydrogen atom, one hydroxyl group and one formyl group. The skeletal structure for the given projection is,
Figure 6
In the given compound,
Both A and C have opposite configuration around the stereogenic centers. Hence, compounds A and C are enantiomers.
Compounds A and C are enantiomers.
(c)
Interpretation: The relation between the compounds A and D is to be determined.
Concept introduction: Newman projections are drawn to visualize the different conformations of a compound around
Enantiomer of a compound has opposite configuration at stereogenic centers. Diastereomers of a compound have at least one stereogenic centre with same configuration and at least one with opposite configuration.

Answer to Problem 5.60P
Compounds A and D are diastereomers.
Explanation of Solution
The given Newman projection A is,
Figure 1
In Newman projection, the circle represents the back carbon and the dot represents the front carbon. The back carbon is substituted by one hydroxyl, one hydrogen atom and one hydroxymethyl group and the front carbon is substituted by one hydrogen atom, one hydroxyl group and one formyl group. The skeletal structure for the given projection is,
Figure 2
In the given compound,
The given Newman projection D is,
Figure 7
In Newman projection the circle represents the back carbon and the dot represents the front carbon. The back carbon is substituted by one hydroxyl, one hydrogen atom and one hydroxymethyl group and the front carbon is substituted by one hydrogen atom, one hydroxyl group and one formyl group. The skeletal structure for the given projection is,
Figure 8
In the given compound,
Both A and D have one stereogenic centre with same configuration and one with opposite configuration. Hence, A and D are diastereomers.
Compounds A and D are diastereomers.
(d)
Interpretation: The relation between the compounds C and D is to be determined.
Concept introduction: Newman projections are drawn to visualize the different conformations of a compound around
Enantiomer of a compound has opposite configuration at stereogenic centers. Diastereomers of a compound have at least one stereogenic centre with same configuration and at least one with opposite configuration.

Answer to Problem 5.60P
Compounds C and D are diastereomers.
Explanation of Solution
The given Newman projection C is,
Figure 5
In Newman projection the circle represents the back carbon and the dot represents the front carbon. The back carbon is substituted by one hydroxyl, one hydrogen atom and one hydroxymethyl group and the front carbon is substituted by one hydrogen atom, one hydroxyl group and one formyl group. The skeletal structure for the given projection is,
Figure 6
In the given compound,
The given Newman projection D is,
Figure 7
In Newman projection the circle represents the back carbon and the dot represents the front carbon. The back carbon is substituted by one hydroxyl, one hydrogen atom and one hydroxymethyl group and the front carbon is substituted by one hydrogen atom, one hydroxyl group and one formyl group. The skeletal structure for the given projection is,
Figure 8
In the given compound,
Both C and D have one stereogenic centre with same configuration and one with opposite configuration. Hence, compounds C and D are diastereomers.
Compounds C and D are diastereomers.
Want to see more full solutions like this?
Chapter 5 Solutions
Organic Chemistry-Package(Custom)
- Predict the major products of the following organic reaction: NC Δ ? Some important Notes: • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to draw bonds carefully to show important geometric relationships between substituents. Note: if your answer contains a complicated ring structure, you must use one of the molecular fragment stamps (available in the menu at right) to enter the ring structure. You can add any substituents using the pencil tool in the usual way. Click and drag to start drawing a structure. Х аarrow_forwardPredict the major products of this organic reaction. Be sure you use dash and wedge bonds to show stereochemistry where it's important. + ☑ OH 1. TsCl, py .... 文 P 2. t-BuO K Click and drag to start drawing a structure.arrow_forwardConsider this organic reaction: ( Draw the major products of the reaction in the drawing area below. If there won't be any major products, because this reaction won't happen at a significant rate, check the box under the drawing area instead. Click and drag to start drawing a structure. Х : а ค 1arrow_forward
- In the drawing area below, draw the major products of this organic reaction: If there are no major products, because nothing much will happen to the reactant under these reaction conditions, check the box under the drawing area instead. 1. NaH 2. CH3Br ? Click and drag to start drawing a structure. No reaction. : ☐ Narrow_forward+ Predict the major product of the following reaction. : ☐ + ☑ ค OH H₂SO4 Click and drag to start drawing a structure.arrow_forwardConsider this organic reaction: ... OH CI Draw the major products of the reaction in the drawing area below. If there won't be any major products, because this reaction won't happen at a significant rate, check the box under the drawing area instead. ☐ No Reaction. Click and drag to start drawing a structure. : аarrow_forward
- Consider the following reactants: Br Would elimination take place at a significant rate between these reactants? Note for advanced students: by significant, we mean that the rate of elimination would be greater than the rate of competing substitution reactions. yes O no If you said elimination would take place, draw the major products in the upper drawing area. If you said elimination would take place, also draw the complete mechanism for one of the major products in the lower drawing area. If there is more than one major product, you may draw the mechanism that leads to any of them. Major Products:arrow_forwardDraw one product of an elimination reaction between the molecules below. Note: There may be several correct answers. You only need to draw one of them. You do not need to draw any of the side products of the reaction. OH + ! : ☐ + Х Click and drag to start drawing a structure.arrow_forwardFind one pertinent analytical procedure for each of following questions relating to food safety analysis. Question 1: The presence of lead, mercury and cadmium in canned tuna Question 2: Correct use of food labellingarrow_forward
- Formulate TWO key questions that are are specifically in relation to food safety. In addition to this, convert these questions into a requirement for chemical analysis.arrow_forwardWhat are the retrosynthesis and forward synthesis of these reactions?arrow_forwardWhich of the given reactions would form meso product? H₂O, H2SO4 III m CH3 CH₂ONa CH3OH || H₂O, H2SO4 CH3 1. LiAlH4, THF 2. H₂O CH3 IVarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning




