![Bundle: Mechanics Of Materials, Loose-leaf Version, 9th + Mindtap Engineering, 2 Terms (12 Months) Printed Access Card](https://www.bartleby.com/isbn_cover_images/9781337594301/9781337594301_largeCoverImage.gif)
A beam ABC with an overhang from B to C is constructed of a C 10 × 30 channel section with flanges facing upward (sec figure). The beam supports its own weight (30 lb/ft) plus a triangular load of maximum intensity g0 acting on the overhang. The allowable stresses in tension and compression arc IS ksi and 12 ksi, respectively.
- Determine the allowable triangular load intensity allow if tne distance L equals 4 ft.
(a)
![Check Mark](/static/check-mark.png)
The allowable triangular load intensity.
Answer to Problem 5.6.11P
The allowable triangular load intensity is
Explanation of Solution
Given information:
The weight of the beam is
The following figure shows the free body diagram.
Figure-(1)
Write the expression for the moment about point
Here, the vertical reaction on point
Write the expression for the equilibrium forces at point
Here, the vertical reaction on point
Write the expression for the maximum moment at point
Here, the maximum moment is
Write the expression for the allowable bending moment based on tension.
Here, maximum tensile stress is
Write the expression for the allowable bending moment based on compression.
Here, maximum compressible stress is
Write the expression for the load intensity of triangular load considering tension.
Write the expression for the load intensity of triangular load considering compression.
Calculation:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Conclusion:
The allowable triangular load intensity is
(b)
![Check Mark](/static/check-mark.png)
The allowable triangular load intensity when the beam is rotated
Answer to Problem 5.6.11P
The allowable triangular load intensity when the beam is rotated
Explanation of Solution
Write the expression for the allowable bending moment based on tension.
Write the expression for the allowable bending moment based on compression.
Write the expression for the load intensity of triangular load considering tension.
Write the expression for the load intensity of triangular load considering compression.
Calculation:
Substitute
Substitute
Substitute
Substitute
Conclusion:
The allowable triangular load intensity when the beam is rotated
Want to see more full solutions like this?
Chapter 5 Solutions
Bundle: Mechanics Of Materials, Loose-leaf Version, 9th + Mindtap Engineering, 2 Terms (12 Months) Printed Access Card
- Show all work pleasearrow_forwardDraw top, side, front view With pen(cil) and paper Multi view drawing and handwriting all of itarrow_forwardA wheel of diameter 150.0 mm and width 37.00 mm carrying a load 2.200 kN rolls on a flat rail. Take the wheel material as steel and the rail material as cast iron. Assume the figure given, which is based on a Poisson's ratio of 0.3, is applicable to estimate the depth at which the maximum shear stress occurs for these materials. At this critical depth, calculate the Hertzian stresses σr, σy, σz, and Tmax for the wheel. 1.0 0.8 0, т Ratio of stress to Pmax 0.4 0.6 90 69 0.2 0.5b b 1.5b Tmax 2b Distance from contact surface The Hertizian stresses are as follows: 02 = or = -23.8 psi for the wheel =| necessary.) σy for the wheel =| MPa σz for the wheel = MPa V4 for the wheel = | MPa 2.5b ཡི 3b MPa (Include a minus sign ifarrow_forward
- 4. Solve for the support reactions at A and B. W1 600 lb/ft W2 150 lb/ft A Barrow_forwardIn cold isostatic pressing, the mold is most typically made of which one of the following: thermosetting polymer tool steel sheet metal textile rubberarrow_forwardThe coefficient of friction between the part and the tool in cold working tends to be: lower higher no different relative to its value in hot workingarrow_forward
- The force F={25i−45j+15k}F={25i−45j+15k} lblb acts at the end A of the pipe assembly shown in (Figure 1). Determine the magnitude of the component F1 which acts along the member AB. Determine the magnitude of the component F2 which acts perpendicular to the AB.arrow_forwardHi can you please help me with the attached question?arrow_forwardHi can you please help me with the attached question?arrow_forward
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)