Introduction To Health Physics
5th Edition
ISBN: 9780071835275
Author: Johnson, Thomas E. (thomas Edward), Cember, Herman.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 5.49P
(a)
To determine
The energy of the backscattered photon.
(b)
To determine
The energy of the Compton edge.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In Compton scattering, if the initial energy of the photon is hf, the energy of the
scattered photon is hf'.
If a y ray is emitted with an energy of 834 keV, what is the back scattered peak energy?
What is the Compton edge energy? The rest-mass energy of an electron, moc“, is 511
kev.
Consider a fission nuclear explosion producing a temperature of 24 million K (25∗107 K). a) What is be the peak wavelength of the thermally produced photons? b) What is the energy (in eV) for this peak wavelength photon?
Question: An x-ray beam containing single-frequency (monoenergetic) photons with 60 keV energy collide with carbon-12 atoms. Considering single-event Campton scattering, if the scattered photons are at 20 degrees off the original beam direction, calculate (i) the Compton photon energy, and (ii) the kinetic energy of the Compton electrons.
Chapter 5 Solutions
Introduction To Health Physics
Ch. 5 - Prob. 5.1PCh. 5 - Prob. 5.2PCh. 5 - Prob. 5.3PCh. 5 - Prob. 5.4PCh. 5 - Prob. 5.5PCh. 5 - Prob. 5.6PCh. 5 - Prob. 5.7PCh. 5 - Prob. 5.8PCh. 5 - Prob. 5.9PCh. 5 - Prob. 5.10P
Ch. 5 - Prob. 5.11PCh. 5 - Prob. 5.12PCh. 5 - Prob. 5.13PCh. 5 - Prob. 5.14PCh. 5 - Prob. 5.15PCh. 5 - Prob. 5.16PCh. 5 - Prob. 5.17PCh. 5 - Prob. 5.18PCh. 5 - Prob. 5.19PCh. 5 - Prob. 5.20PCh. 5 - Calculate the probability that a 2-MeV photon in a...Ch. 5 - Prob. 5.22PCh. 5 - Prob. 5.23PCh. 5 - Prob. 5.24PCh. 5 - Prob. 5.25PCh. 5 - Prob. 5.26PCh. 5 - Prob. 5.27PCh. 5 - Prob. 5.28PCh. 5 - Prob. 5.29PCh. 5 - Prob. 5.30PCh. 5 - Prob. 5.31PCh. 5 - Prob. 5.32PCh. 5 - Prob. 5.33PCh. 5 - Prob. 5.34PCh. 5 - Prob. 5.35PCh. 5 - Prob. 5.36PCh. 5 - Prob. 5.37PCh. 5 - Prob. 5.38PCh. 5 - Prob. 5.39PCh. 5 - Prob. 5.40PCh. 5 - A 1-M solution of boric acid, H3BO3 , is...Ch. 5 - Prob. 5.42PCh. 5 - Prob. 5.43PCh. 5 - Prob. 5.44PCh. 5 - Prob. 5.45PCh. 5 - Prob. 5.46PCh. 5 - Prob. 5.47PCh. 5 - Prob. 5.49PCh. 5 - Prob. 5.50PCh. 5 - Prob. 5.54PCh. 5 - What is the range in tissue of the beta particles...Ch. 5 - Prob. 5.56P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The work function for potassium is 2.26 eV. What is the cutoff frequency when this metal is used as photoelectrode? What is the stopping potential when for the emitted electrons when this photo electrode is exposed to radiation of frequency 1200 THz?arrow_forwardAn X-ray photon is produced by braking, losing kinetic energy when braking. Find the initial kinetic energy, the final moment, the energy of the produced XR photon, and the voltage that accelerates the electron initially. What would be the minimum wavelength in the XR emission.arrow_forwardX-rays of wavelength λ = 0.140nm are scatteredfrom carbon. What is the expected Compton wavelengthshift for photons detected at angles (relative to the incident beam) of exactly (a) 45°, (b) 90°, (c) 180°?arrow_forward
- A sodium vapor lamp (λ = 589 nm) with a power of 100 W radiates evenly in all directions. With what frequency are photons produced in the discharge lamp (frequency = number of photons per second)? At what distance from the vapor lamp will the absorbing screen receive photons with frequency 1 photon/(cm2.s)? What is the photon current (number of photons per unit area per unit time) on the small screenat a distance of 2 m from the discharge lamp?arrow_forwardThe work function for a Palladium metal plate on a PCB board of a detector is 5.22 eV. A. Compute the energy, in units of Joules, that is required to remove an electron from the plate B. Compute the KE and speed of and electron hit by a photon of wavelength 75 nm C. Compute the speed of the ejected electron if the wavelength of the photon is 265 nm (J) and (m/s) (J). (m/s)arrow_forwardK 1...arrow_forward
- A photon with wavelength X scatters off an electron at rest, at an angle with the incident direction. The Compton wavelength of the electron Ac = 0.0024 nm. a) For λ = 0.0006 nm and 0 = 53 degrees, find the wavelength X' of the scattered photon in nanometres. b) Obtain a formula for the energy of the electron Ee after collision, in terms of the universal constants h, c and the variables X, X' and Ac. The answer must be expressed in terms of these variables only. (Please enter an algebraic expression using latex format; do not input any numerical values) c) Using the energy conservation condition, find the value of the electron energy Ee after scattering in units of keV. d) Write an algebraic expression for the electron's momentum pe in terms of its energy Ee, its mass me and the speed of light c. e) What is the de Broglie wavelength of the scattered electron ? Express your answer in terms of Ee, me, and X and c. f) Find the value of the de Broglie wavelength of the scattered electron…arrow_forwardX rays of wavelength 0.0123 nm are directed in the positive direction of an x axis onto a target containing loosely bound electrons. For Compton scattering from one of those electrons, at an angle of 156°, what are (a) the Compton shift, (b) the corresponding change in photon energy, (c) the kinetic energy of the recoiling electron, and (d) the angle between the positive direction of the x axis and the electron's direction of motion? The electron Compton wavelength is 2.43 x 10-12 m.arrow_forwardThe work function of aluminum is 4.26 ev. What is the maximum velocity of an electron emitted from aluminum after the absorption of a photon of wavelength 117 nm. Give your answer in m/s. Round your answer to 2 decimal places. Add your answer Question 10 A photon Compton scatters from an electron. At what scattering angle for the photon will the electron acquire the largest kinetic energy? 45 degrees 90 degrees C o degress D 180 degreesarrow_forward
- X rays of wavelength 0.0100 nm are directed in the positive direction of an x axis onto a target containing loosely bound electrons. For Compton scattering from one of those electrons, at an angle of 180°, what are (a) the Compton shift, (b) the corresponding change in photon energy, (c) the kinetic energy of the recoiling electron, and (d) the angle between the positive direction of the x axis and the electron’s direction of motion?arrow_forwardEM radiation of wavelength 445 nm having an intensity of 1.31 kW/m2 is incident ona 1.90 mm2area of sodium metal.(a) What is the energy incident per second? (b)Calculate the number of photoelectrons per second ejected from the given area of sodiummetal? (c) Given that the binding energy is 2.28 eV, what power (in W) is carried away by theelectrons?arrow_forwardA sodium lamp emits light at the power P = 100 W and at the wavelength = 593 nm, and the emission is uniformly in all directions. (a) At what rate are photons emitted by the lamp? (b) At what distance from the lamp will a totally absorbing screen absorb photons at the rate of 1.00 photon /cm²s? (c) What is the rate per square meter at which photons are intercepted by a screen at a distance of 2.40 m from the lamp? (a) Number (b) Number i MI (c) Number i Units Units Units <arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax