Introduction To Health Physics
5th Edition
ISBN: 9780071835275
Author: Johnson, Thomas E. (thomas Edward), Cember, Herman.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 5.16P
To determine
The ratio of emergent fluxes.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The point source Co-60 emits gamma with energies of 1.17 MeV and 1.33 MeV. Each of these energies emits the same number of photon particles. At a certain location, the flux that is read is 5.7 x 109 photons/cm2.s, what is the intensity or energy flux with units of J/m^2.min
T1
The point source Co-60 emits gamma with energies of 1.17 MeV and 1.33 MeV. Each of these energies emits the same number of photon particles. At a certain location, the flux read is 5.7 x 109 photons/cm2.s, what is the flux energy for 1.17 MeV for 24 hours of radiation exposure?
Chapter 5 Solutions
Introduction To Health Physics
Ch. 5 - Prob. 5.1PCh. 5 - Prob. 5.2PCh. 5 - Prob. 5.3PCh. 5 - Prob. 5.4PCh. 5 - Prob. 5.5PCh. 5 - Prob. 5.6PCh. 5 - Prob. 5.7PCh. 5 - Prob. 5.8PCh. 5 - Prob. 5.9PCh. 5 - Prob. 5.10P
Ch. 5 - Prob. 5.11PCh. 5 - Prob. 5.12PCh. 5 - Prob. 5.13PCh. 5 - Prob. 5.14PCh. 5 - Prob. 5.15PCh. 5 - Prob. 5.16PCh. 5 - Prob. 5.17PCh. 5 - Prob. 5.18PCh. 5 - Prob. 5.19PCh. 5 - Prob. 5.20PCh. 5 - Calculate the probability that a 2-MeV photon in a...Ch. 5 - Prob. 5.22PCh. 5 - Prob. 5.23PCh. 5 - Prob. 5.24PCh. 5 - Prob. 5.25PCh. 5 - Prob. 5.26PCh. 5 - Prob. 5.27PCh. 5 - Prob. 5.28PCh. 5 - Prob. 5.29PCh. 5 - Prob. 5.30PCh. 5 - Prob. 5.31PCh. 5 - Prob. 5.32PCh. 5 - Prob. 5.33PCh. 5 - Prob. 5.34PCh. 5 - Prob. 5.35PCh. 5 - Prob. 5.36PCh. 5 - Prob. 5.37PCh. 5 - Prob. 5.38PCh. 5 - Prob. 5.39PCh. 5 - Prob. 5.40PCh. 5 - A 1-M solution of boric acid, H3BO3 , is...Ch. 5 - Prob. 5.42PCh. 5 - Prob. 5.43PCh. 5 - Prob. 5.44PCh. 5 - Prob. 5.45PCh. 5 - Prob. 5.46PCh. 5 - Prob. 5.47PCh. 5 - Prob. 5.49PCh. 5 - Prob. 5.50PCh. 5 - Prob. 5.54PCh. 5 - What is the range in tissue of the beta particles...Ch. 5 - Prob. 5.56P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 1. A point source of Co-60 gamma rays emits qual number of photons of 1.17 and 1.33 MeV, giving a flux density of 5.7 × 10⁹ photons/cm² sec at a specified location. What is the energy flux density there, expressed in erg/cm² sec and in J/m² min?arrow_forwardSmugglers. Rumor has it that a company has been smuggling gold out of the country using sealed, cylindrical barrels with hollow walls. They pour molten gold into the hollows, and then fill the remainder of the barrel's internal volume with packing peanuts. The total mass of the gold-walled barrel was designed so that it exactly matches those used to transport a volatile chemical that cannot be exposed to air (and therefore the barrel cannot be opened and checked). The X-ray machine usually used to screen containers is suspiciously damaged and not available. TUL (a) There are 20 barrels total, and they are all identical: mass m = 50.0 kg, height h = 1.2 m, and diameter D = 0.25 m. How do you determine which ones have walls filled with gold (and are essentially hollow on the interior except for packing peanuts) and those completely filled with the volatile chemical (a tightly-packed powder) where the mass is uniformly distributed? Hint: apply the concepts of moment of inertia. Is the…arrow_forwardSmugglers. Rumor has it that a company has been smuggling gold out of the country using sealed, cylindrical barrels with hollow walls. They pour molten gold into the hollows, and then fill the remainder of the barrel's internal volume with packing peanuts. The total mass of the gold-walled barrel was designed so that it exactly matches those used to transport a volatile chemical that cannot be exposed to air (and therefore the barrel cannot be opened and checked). The X-ray machine usually used to screen containers is suspiciously damaged and not available. (a) There are 20 barrels total, and they are all identical: mass m = 50.0 kg, height h = 1.2 m, and diameter D = 0.25 m. How do you determine which ones have walls filled with gold (and are essentially hollow on the interior except for packing peanuts) and those completely filled with the volatile chemical (a tightly-packed powder) where the mass is uniformly distributed? Hint: apply the concepts of moment of inertia. Is the moment…arrow_forward
- Smugglers. Rumor has it that a company has been smuggling gold out of the country using sealed, cylindrical barrels with hollow walls. They pour molten gold into the hollows, and then fill the remainder of the barrel's internal volume with packing peanuts. The total mass of the gold-walled barrel was designed so that it exactly matches those used to transport a volatile chemical that cannot be exposed to air (and therefore the barrel cannot be opened and checked). The X-ray machine usually used to screen containers is suspiciously damaged and not available. (a) There are 20 barrels total, and they are all identical: mass m= 50.0 kg, height h= 1.2 m, and diameter D = 0.25 m. How do you determine which ones have walls filled with gold (and are essentially hollow on the interior except for packing peanuts) and those completely filled with the volatile chemical (a tightly-packed powder) where the mass is uniformly distributed? Hint: apply the concepts of moment of inertia. Is the moment of…arrow_forwardNeeds Complete typed solution with 100 % accuracy.arrow_forwardWhat fraction of 5-MeV alpha particles will be scattered through an angle greater than 8° from a gold foil (Z=79, density = 19.3 g/cm^3) of thickness of 10^-8m?arrow_forward
- Question: The radionuclide Tc-99m is a gamma photon emitter. The emitted gamma photonenergy is 141 keV. The scintillation crystal in a Gamma camera will convert the single gammaphoton to a burst of visible photons. Assuming the generated visible photons wavelength is 550nm, calculate how many visible 550-nm photons will have the same amount of energy as a single141-keV gamma photon?arrow_forwardAt around 150keV, If you know that the mass attenuation coefficient of lead is around 4 cm2 /g, and that its density is 11.34 g/cm3 : a) What is the half-value layer (HVL) of lead at this photon energy? b) How many sheets of HVL thickness you need to use in order to attenuate the X-ray beam at around 150keV to be lower than 10-3 of its incident intensityarrow_forwardLead aprons are the primary radiation protective garments used by personnel during fluoroscopy. An apron with 0.5-mm thickness can attenuate approximately 90% of the X-rayradiation. Find linear and mass attenuation coefficients for lead, if it has density ρ = 11.35 g/cm3arrow_forward
- Calculate the density of a material if the number of gamma photons decreases from 5206 to 2210 after passing through the material. Select one: D = 0.42 O D= 0.56 O D= 0.37 D= -0.32arrow_forwardTypical HVL values for X-ray radiation with energy 1 MeV are 3 cm for bone tissues, 2 cm for aluminum, 0.3 cm for lead. Find mass and linear attenuation coefficients if densities are 1.85 g/cm3 , 2.70 g/cm3 , 11.35 g/cm3, respectively.arrow_forwardThe mass attenuation coefficient of copper is 0.0589 cm2/g for 1.0-MeV photons. The intensity of 1.0-MeV X-ray photons in a narrow beam is reduced to what fraction by a slab of copper 1 cm thick? The density of copper is 8.9 g/cm3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning