Introduction To Health Physics
5th Edition
ISBN: 9780071835275
Author: Johnson, Thomas E. (thomas Edward), Cember, Herman.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 5.47P
To determine
The macroscopic capture section for water.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If air is 80% N15 and 20% 016. Using the data below, calculate the average distance
a thermal neutron travels in air before having an interaction.
Air density = 1.202 gm/cm3
016 atomic wt =
15.994 gm
N15 atomic wt = 14.0067 gm
O10 total microscopic cross section = 4.03 b
section
N15 total microscopic cross
12.20 b
%3D
129.328 cm
O 1.855 cm
O 123.762 cm
12.653 cm
An aluminum foil of thickness 0.30 mm is bombarded by energetic neutrons. The
aluminum nuclei undergo neutron capture according to the process 2Al(n,y)28 Al, with
a measured capture cross section of 2.0×1031 m². Assuming the flux of incident
neutrons to be 5.0×10¹2 neutrons/ cm²-s, calculate the number of neutrons captured
per second by 1.0 cm² of the foil. The density of aluminum is 2.7 g/cm³.
9.20 A 1 g sample of 1"N is placed in a neutron howitzer with a flux of 1.50 × 10ª n/
cm2-s for five days. Write out the most probable nuclear reaction. Assuming this
is the only reaction, what percentage (atom!) of the sample was transmuted?
0 21
Chapter 5 Solutions
Introduction To Health Physics
Ch. 5 - Prob. 5.1PCh. 5 - Prob. 5.2PCh. 5 - Prob. 5.3PCh. 5 - Prob. 5.4PCh. 5 - Prob. 5.5PCh. 5 - Prob. 5.6PCh. 5 - Prob. 5.7PCh. 5 - Prob. 5.8PCh. 5 - Prob. 5.9PCh. 5 - Prob. 5.10P
Ch. 5 - Prob. 5.11PCh. 5 - Prob. 5.12PCh. 5 - Prob. 5.13PCh. 5 - Prob. 5.14PCh. 5 - Prob. 5.15PCh. 5 - Prob. 5.16PCh. 5 - Prob. 5.17PCh. 5 - Prob. 5.18PCh. 5 - Prob. 5.19PCh. 5 - Prob. 5.20PCh. 5 - Calculate the probability that a 2-MeV photon in a...Ch. 5 - Prob. 5.22PCh. 5 - Prob. 5.23PCh. 5 - Prob. 5.24PCh. 5 - Prob. 5.25PCh. 5 - Prob. 5.26PCh. 5 - Prob. 5.27PCh. 5 - Prob. 5.28PCh. 5 - Prob. 5.29PCh. 5 - Prob. 5.30PCh. 5 - Prob. 5.31PCh. 5 - Prob. 5.32PCh. 5 - Prob. 5.33PCh. 5 - Prob. 5.34PCh. 5 - Prob. 5.35PCh. 5 - Prob. 5.36PCh. 5 - Prob. 5.37PCh. 5 - Prob. 5.38PCh. 5 - Prob. 5.39PCh. 5 - Prob. 5.40PCh. 5 - A 1-M solution of boric acid, H3BO3 , is...Ch. 5 - Prob. 5.42PCh. 5 - Prob. 5.43PCh. 5 - Prob. 5.44PCh. 5 - Prob. 5.45PCh. 5 - Prob. 5.46PCh. 5 - Prob. 5.47PCh. 5 - Prob. 5.49PCh. 5 - Prob. 5.50PCh. 5 - Prob. 5.54PCh. 5 - What is the range in tissue of the beta particles...Ch. 5 - Prob. 5.56P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the dose in mSv for: (a) a 0.1 Gy xray? (b) 2.5 mGy of neutron exposure to the eye? (c) 1.5 mGy of exposure?arrow_forwardData from the appendices and the periodic table may be needed for these problems. Show that the activity of the 14C in 1.00 g of 12C found in living tissue is 0.250 Bq.arrow_forward(a) How many 239Pu nuclei must fission to produce a 20.0kT yield, assuming 200 MeV per fission? (b) What is the mass of this much 239Pu?arrow_forward
- Neutrons from a source (perhaps the one discussed in the preceding problem) bombard natural molybdenum, which is 24 percent 98Mo. What is the energy output of the reaction 98Mo+n99Mo+ ? The mass of 98MB is given in Appendix A: Atomic Masses, and that of 99Mo is 98.907711 u.arrow_forwardCalculate the dose in Sv to the chest at a patient given an xray under the following conditions. The xray beam intensity is 1.50 W/m2, the area of the chest exposed is 0.0750 m2 35.0% of the xrays are absorbed in 20.0 kg of tissue, and the exposure time is 0.250 s.arrow_forwardThe atomic weight of cadmium is 112.41, and its density is 8.65 g/cm3. Using Figure 14.3, estimate the attenuation distance of a thermal neutron beam in cadmium. (The attenuation distance is the distance traveled after which the intensity of the beam is reduced to 1/e of its initial value, where e is the base of the natural logarithms.)arrow_forward
- (a) Calculate the radius of 58Ni, one of the most tightly bound stable nuclei. (b) What is the ratio of the radius of 58Ni to that at 258Ha, one of the largest nuclei ever made? Note that the radius of the largest nucleus is still much smaller than ?le size of an atom.arrow_forwardThe electrical power output of a large nuclear reactor facility is 900 MW. It has a 35.0% efficiency in converting nuclear power to electrical. (a) What is the thermal nuclear power output in megawatts? (b) How many 235U nuclei fission each second, assuming the average fission produces 200 MeV? (c) What mass of 235U is fissioned in one year of fullpower operation?arrow_forwardData from the appendices and the periodic table may be needed for these problems. A 60Co source is labeled 4.00 mCi, but its present activity is found to be 1.85107Bq. (a) What is the present activity in mCi? (b) How long ago did it actually have a 4.00—mCi activity?arrow_forward
- B7arrow_forwardConsider the nuclei Sn with an atomic number of 50 and mass number is 118 . Determine its mass defect in kilograms if its atomic mass is 116.932 amu. The mass of a proton and neutron are 1.0073 and 1.0087 amu, respectively. Express your answers in three decimal places in scientific notation, i.e., 6.022e23 to represent .arrow_forwardQ5: Energetic neutrons bombard an aluminum foil of thickness 0.20 mm. The aluminum nuclei undergo neutron capture according to the process 2"Al (n, y) 28AI, with a measured capture cross section of (2.0 10-3 b). Assuming the flux of incident neutrons to be (7.0*102 neutrons/cm2.s), calculate the number of neutrons captured per second by 1.0 cm-2 of the foil, and what is the enough thickness to capturing the all neutrons.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning