Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5, Problem 5.41QP
Aggregates from three sources having the properties shown in Table P5.41 were blended at a ratio of 25:60:15 by weight. Determine the properties of the aggregate blend.
TABLE P5.41
Property | Aggregate 1 | Aggregate 2 | Sand |
Coarse aggregate angularity, percent crushed faces | 73 | 95 | N/A |
Bulk specific gravity | 2.774 | 2.390 | 2.552 |
Apparent specific gravity | 2.810 | 2.427 | 2.684 |
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The anchor from Part A can also fail in shear in the circular head, as shown (Figure 3). What is the minimum thickness tt required for the head to support the allowed load PallowPallow = 15 kNkN if the material fails in shear at τfailτfail = 30 MPaMPa ? Use a factor of safety F.S.F.S. = 2.2.
Find three sites on the www related to reinforced concrete (other than thoselinked to the Syllabus). For each site, provide a written description of the sitecontent and the site’s URL.
Visit the course web page on Canvas. Find the document where the advantagesand disadvantages of reinforced concrete are listed. Provide at least three additionaladvantages and three additional disadvantages. Justify your answer.
Chapter 5 Solutions
Materials for Civil and Construction Engineers (4th Edition)
Ch. 5 - Prob. 5.1QPCh. 5 - Discuss five different desirable characteristics...Ch. 5 - Discuss five different desirable characteristics...Ch. 5 - The shape and surface texture of aggregate...Ch. 5 - Define the following terms: a. Saturated...Ch. 5 - Three samples of fine aggregate have the...Ch. 5 - A sample of wet aggregate weighed 297.2 N. After...Ch. 5 - 46.5 kg (102.3 lb) of fine aggregate is mixed with...Ch. 5 - Samples of coarse aggregate from a stockpile are...Ch. 5 - Base course aggregate has a target dry density of...
Ch. 5 - Calculate the percent voids between aggregate...Ch. 5 - Calculate the percent voids between aggregate...Ch. 5 - Coarse aggregate is placed in a rigid bucket and...Ch. 5 - The following laboratory tests are performed on...Ch. 5 - Students in the materials lab performed the...Ch. 5 - The specific gravity and absorption test (ASTM...Ch. 5 - Prob. 5.18QPCh. 5 - Calculate the sieve analysis shown in Table P5.19...Ch. 5 - Calculate the sieve analysis shown in Table P5.20,...Ch. 5 - A sieve analysis test was performed on a sample of...Ch. 5 - A sieve analysis test was performed on a sample of...Ch. 5 - Draw a graph to show the cumulative percent...Ch. 5 - Referring to Table 5.6, plot the specification...Ch. 5 - Referring to the aggregate gradations A, B, and C...Ch. 5 - Table P5.26 shows the grain size distributions of...Ch. 5 - Table P5.27 shows the grain size distributions of...Ch. 5 - Three aggregates are to be mixed together in the...Ch. 5 - Table P5.29 shows the grain size distribution for...Ch. 5 - Laboratory specific gravity and absorption tests...Ch. 5 - Table P5.31 shows the grain size distribution for...Ch. 5 - Prob. 5.32QPCh. 5 - Laboratory specific gravity and absorption tests...Ch. 5 - Prob. 5.34QPCh. 5 - Define the fineness modulus of aggregate. What is...Ch. 5 - Calculate the fineness modulus of aggregate A in...Ch. 5 - Calculate the fineness modulus of aggregate B in...Ch. 5 - A portland cement concrete mix requires mixing...Ch. 5 - Discuss the effect of the amount of material...Ch. 5 - Aggregates from three sources having the...Ch. 5 - Aggregates from three sources having the...Ch. 5 - A contractor is considering using three stockpiles...Ch. 5 - Prob. 5.43QPCh. 5 - What are the typical deleterious substances in...Ch. 5 - Review ASTM D75 and summarize the following: a....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Max. Flow rate from catchment area=0.25 m³/s drain to road (one side road) having roof section with longitudinal slope %1, n=0.016, cross-section slope %1, 24 m width of road, 0.15 m curb stone. Gutter data: 7 cm high of water. 1-What is the capacity (or Max. flow rate) for this road? 2- With 0.5 m3 /s is it flood? 3-Whate is the clear zone in case Q=0.5 m³/s?arrow_forwardEstimate Q inlet for curb inlet in sump, If y=5 cm, L=0.5 m and %13 clogging.arrow_forward3020,220 30 30m 120 Design inlet system for the road in figure below. C=0.93, i=65 mm/hr, Gutter data: y max.=9 cm, n=0.016, k=0.38, slope %1, Z=40, (space-bar-2 cm). Estimate inlet type. elevation in points (a-82.1, b=82 m), in point t rain water depth in point f>3 cm in u turn >5.5 cm. Sag point in S. Drow curbstone DATE DATE 5 100 Median strip 10 %1 d 72arrow_forward
- Estimate Q inlet for grate inlet in sump, If w=0.4 m, L-0.5 m, y=5 cm and opining space 3 cm and bar width= 2.5 cm %12 clogging.arrow_forward12:39 You HD ⚫2 February, 10:33 am GE342 Physical Geodesy Quiz 1 Tuesday 30th January 2024 Duration 1 hour Ill. 68% Question 1 A spherical triangle ABC has an angle B = 90° and sides a = 50° and b = 70°. Find A, C and c (9) Question 2 Given two cities: Los Angeles (34°15′ N, 118°15' W) and Jakarta (06°20'S, 106°10'E). a. Find the length of the great circle arc connecting the two cities. (7) b. What would be the azimuth setting for an airplane flying from L.A to Jakarta? (6) c. What would be the azimuth setting for an airplane flying from Jakarta to L.A? (7) 29 ← Replyarrow_forward11:49 Question 1 a. What is Geodesy? (2) b. What is physical geodesy. (2) .ill 73% c. Write short notes on the linkages physical geodesy has with each of the following: 8 marks Oceanography i. ii. Geophysics iii. iv. Geology Hydrology d. Define the following surfaces and draw a sketch showing the relationship between them. Geoid, reference ellipsoid, topography. (2+2+2) e. The following points had their ellipsoidal heights measured, compute their orthometric heights given the geoidal undulations: (2) Name TP5 ZQ135 Latitude Longitude Ellipsoid hgt. -12.61179 28.18421 1263.995 -12.80345 28.23022 1215.166 Geoidal undulations -6.715 -6.684 Question 2 (8+6+6) The following coordinates were given on a spherical earth with a radius of 6378000m, find a. The shortest distance between the points b. The azimuth from A to B c. The azimuth from B to A Latitude Longitude A 52°21'14"N 93°48'25″E B 52°24'18"N 93°42'30"E Question 3 (20) Two points lie on the same latitude as shown below: Point…arrow_forward
- Home prob.: ·A Simply Supported beam, with cross section (250x60. a & Span 6.00m. It is carrying the req'd.. prestressing force for :- und.l. of 20 kN/m - Compu ic.service (a) Bottom fiber Stress equal to zero under full load with max (b1 Top fiber Stress equal to zero under D.L. plus prestressin force Cat initial stage)arrow_forwardAn oil pipeline and a 1.200 m^3 rigid air tank are connected to each other by a manometer, as shown in the figure. The tank contains 15 kg of air at 80°C. Assume the pressure in the oil pipeline to remain constant and the air volume in the manometer to be negligible relative to the volume of the tank. Determine the change in Δh when the temperature in the tank drops to 20°C.arrow_forwardCalculate the collapse load (P) for the two fixed ended beam shown below. Use virtual work method P 2 m 4 m L= 6 marrow_forward
- Find the collapse load (Wu) for the one-end continuous beam shown below. Use virtual work method Wu 6 marrow_forwardFind the maximum distributed load can be applied to the two fixed ends beam shown below. Use Virtual work method Wu L=6marrow_forwardCalculate the collapse load (P) for the two fixed ended beam shown below. Use virtual work method P 2 m 4 m L=6marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningSolid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,
- Fundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,Construction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,
Fundamentals Of Construction Estimating
Civil Engineering
ISBN:9781337399395
Author:Pratt, David J.
Publisher:Cengage,
Construction Materials, Methods and Techniques (M...
Civil Engineering
ISBN:9781305086272
Author:William P. Spence, Eva Kultermann
Publisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Aggregates: Properties; Author: nptelhrd;https://www.youtube.com/watch?v=49yGZYeokKM;License: Standard YouTube License, CC-BY