Concept explainers
(a)
Interpretation:
IUPAC name for the given alkene has to be drawn.
Concept Introduction:
- Name the main chain: Find the longest carbon chain and name the chain according to the number of carbon atoms it contains; is also the root name.
- Number the carbon atoms in the main chain: The carbons are numbered, in which the substituents must get lowest possible numbers.
- Identify the substituents, and number each: The number at where substituents are present has to be noted. The substituents written as prefix.
- Write the names as a single word: Use the hyphen to separate the numbers from the different prefix; commas to separate numbers. If two or more different substituents are present, arrange them in alphabetical order. If two or more identical substituents are present, use prefixes di-, tri-, tetra-, but this particular prefix should not be used for alphabetizing purpose.
Alkene:
The systematic name of alkenes are written by replacing “ane” of
The IUPAC name for the carboxylic acid is written by replacing the ‘e’ of alkene to ‘oic acid’.
(b)
Interpretation:
IUPAC name for the given alkene has to be drawn.
Concept Introduction:
IUPAC nomenclature:
- Name the main chain: Find the longest carbon chain and name the chain according to the number of carbon atoms it contains; is also the suffix part of the name.
- Number the carbon atoms in the main chain: The carbons are numbered, in which the substituents must get lowest possible numbers.
- Identify the substituents, and number each: The number at where substituents are present has to be noted. The substituents written as prefix.
- Write the names as a single word: Use the hyphen to separate the numbers from the different prefix; commas to separate numbers. If two or more different substituents are present, arrange them in alphabetical order. If two or more identical substituents are present, use prefixes di-, tri-, tetra-, but this particular prefix should not be used for alphabetizing purpose.
Alkene: Unsaturated hydrocarbons having at least one double bond between two carbon atoms are known as alkenes.
The systematic name of alkenes are written by replacing “ane” of alkane with the suffix name “ene”. Numbering of the main chain should be in such away that alkene group must get lowest possible numbers.
The IUPAC name for the aldehyde is written by replacing the ‘e’ of alkene to ‘al’.
(c)
Interpretation:
IUPAC name for the given alkene has to be drawn.
Concept Introduction:
IUPAC nomenclature:
- Name the main chain: Find the longest carbon chain and name the chain according to the number of carbon atoms it contains; is also the suffix part of the name.
- Number the carbon atoms in the main chain: The carbons are numbered, in which the substituents must get lowest possible numbers.
- Identify the substituents, and number each: The number at where substituents are present has to be noted. The substituents written as prefix.
- Write the names as a single word: Use the hyphen to separate the numbers from the different prefix; commas to separate numbers. If two or more different substituents are present, arrange them in alphabetical order. If two or more identical substituents are present, use prefixes di-, tri-, tetra-, but this particular prefix should not be used for alphabetizing purpose.
Alkene: Unsaturated hydrocarbons having at least one double bond between two carbon atoms are known as alkenes.
The systematic name of alkenes are written by replacing “ane” of alkane with the suffix name “ene”. Numbering of the main chain should be in such away that alkene group must get lowest possible numbers.
Carboxylic acid: One
The IUPAC name for the carboxylic acid is written by replacing the ‘e’ of alkene to ‘oic acid’.
E configuration: The geometric isomers are given E configuration if high priority groups are placed on opposite sides of the bond.
Z configuration: The geometric isomers are given Z configuration if high priority groups are placed on same sides of the bond.
(d)
Interpretation:
IUPAC name for the given alkene has to be drawn.
Concept Introduction:
IUPAC nomenclature:
- Name the main chain: Find the longest carbon chain and name the chain according to the number of carbon atoms it contains; is also the suffix part of the name.
- Number the carbon atoms in the main chain: The carbons are numbered, in which the substituents must get lowest possible numbers.
- Identify the substituents, and number each: The number at where substituents are present has to be noted. The substituents written as prefix.
- Write the names as a single word: Use the hyphen to separate the numbers from the different prefix; commas to separate numbers. If two or more different substituents are present, arrange them in alphabetical order. If two or more identical substituents are present, use prefixes di-, tri-, tetra-, but this particular prefix should not be used for alphabetizing purpose.
Alkene: Unsaturated hydrocarbons having at least one double bond between two carbon atoms are known as alkenes.
The systematic name of alkenes are written by replacing “ane” of alkane with the suffix name “ene”. Numbering of the main chain should be in such away that alkene group must get lowest possible numbers.
The IUPAC name for the ketone is written by replacing the ‘e’ of alkane to ‘one’.
Trending nowThis is a popular solution!
Chapter 5 Solutions
Organic Chemistry
- What type of hybridized orbital is present on carbon atoms bonded by a double bond? How many of these hybrid orbitals are on each carbon atom?arrow_forwardGive the IUPAC names for the eight isomeric halogenated hydrocarbons that have the molecular formula C5H11Cl.arrow_forwardWhat is the IUPAC name for this structure and why?arrow_forward
- One of the four compounds whose structures are shown below is ethyl vanillin, a synthetic compound used as a flavoring. The IUPAC name of this compound is 3-ethoxy-4- hydroxybenzaldehyde. Identify this compound.arrow_forwardGive the structure of the following compounds and write their IUPAC names: Ethyl propyl ether Methyl n-butyl ether Ethyl isopropyl ether Dipropyl etherarrow_forwardWrite a generalized statement regarding the solubility of hydrocarbons in a polar solvent (water) and a less polar solvent (dicloromethane) .What conclusion can you make regarding the polarity of hydrocarbons?arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning