
Concept explainers
What is the geometry around the central atom in each of the following molecular models?
(a)

Interpretation:
The geometrical arrangement of charge clouds around the central atom in each of the given molecular models has to be given.
Concept introduction:
VSEPR model:
- Valance Shell Electron-Pair Repulsion (VSEPR) model is used to predict the shapes of the molecules by the electronic structure of its atoms.
- Electrons that are involved in bonds and in lone pairs of electrons should be thought like occupying “charge clouds” or regions of electron density.
- These region of electron density can repel one another and stay as much as possible and results to assume specific shapes.
Rules to predict the shapes of molecules by VSEPR model:
- Write electron-dot structure of the given molecule.
- Count the number of electron charge clouds surrounding the central atom.
- Determine the geometric arrangement of charge clouds surround the each atom and assume its charge clouds can be oriented in the space as far away from one to another as possible.
Explanation of Solution
According to the VSEPR model, a geometry having chemical species with 6 electron domains or electron cloud surrounding the central atom and also have 5 bonding electron pairs and 1 lone pair of electron in the chemical molecule with bond angle of
Hence, the given molecular model indicates square pyramidal geometry.
(b)

Interpretation:
The geometrical arrangement of charge clouds around the central atom in each of the given molecular models has to be given.
Concept introduction:
VSEPR model:
- Valance Shell Electron-Pair Repulsion (VSEPR) model is used to predict the shapes of the molecules by the electronic structure of its atoms.
- Electrons that are involved in bonds and in lone pairs of electrons should be thought like occupying “charge clouds” or regions of electron density.
- These region of electron density can repel one another and stay as much as possible and results to assume specific shapes.
Rules to predict the shapes of molecules by VSEPR model:
- Write electron-dot structure of the given molecule.
- Count the number of electron charge clouds surrounding the central atom.
- Determine the geometric arrangement of charge clouds surround the each atom and assume its charge clouds can be oriented in the space as far away from one to another as possible.
Explanation of Solution
According to the VSEPR model, a geometry having chemical species with 4 electron domains or electron cloud surrounding the central atom and also have 3 bonding electron pairs and 1 lone pair of electron in the chemical molecule with bond angle of
Hence, the given molecular model indicates trigonal pyramidal geometry.
(c)

Interpretation:
The geometrical arrangement of charge clouds around the central atom in each of the given molecular models has to be given.
Concept introduction:
VSEPR model:
- Valance Shell Electron-Pair Repulsion (VSEPR) model is used to predict the shapes of the molecules by the electronic structure of its atoms.
- Electrons that are involved in bonds and in lone pairs of electrons should be thought like occupying “charge clouds” or regions of electron density.
- These region of electron density can repel one another and stay as much as possible and results to assume specific shapes.
Rules to predict the shapes of molecules by VSEPR model:
- Write electron-dot structure of the given molecule.
- Count the number of electron charge clouds surrounding the central atom.
- Determine the geometric arrangement of charge clouds surround the each atom and assume its charge clouds can be oriented in the space as far away from one to another as possible.
Explanation of Solution
According to the VSEPR model, a geometry having chemical species with 6 electron domains or electron cloud surrounding the central atom and also have 4 bonding electron pairs and 2 lone pairs of electron in the chemical molecule with bond angle of
Hence, the given molecular model indicates square planar geometry.
(d)

Interpretation:
The geometrical arrangement of charge clouds around the central atom in each of the given molecular models has to be given.
Concept introduction:
VSEPR model:
- Valance Shell Electron-Pair Repulsion (VSEPR) model is used to predict the shapes of the molecules by the electronic structure of its atoms.
- Electrons that are involved in bonds and in lone pairs of electrons should be thought like occupying “charge clouds” or regions of electron density.
- These region of electron density can repel one another and stay as much as possible and results to assume specific shapes.
Rules to predict the shapes of molecules by VSEPR model:
- Write electron-dot structure of the given molecule.
- Count the number of electron charge clouds surrounding the central atom.
- Determine the geometric arrangement of charge clouds surround the each atom and assume its charge clouds can be oriented in the space as far away from one to another as possible.
Explanation of Solution
According to the VSEPR model, a geometry having chemical species with 3 electron domains or electron cloud surrounding the central atom and also have 3 bonding electron pairs in the chemical molecule with bond angle of
Hence, the given molecular model indicates trigonal planar geometry.
Want to see more full solutions like this?
Chapter 5 Solutions
General Chemistry: Atoms First
- A student proposes the transformation below in one step of an organic synthesis. There may be one or more reactants missing from the left-hand side, but there are no products missing from the right-hand side. There may also be catalysts, small inorganic reagents, and other important reaction conditions missing from the arrow. • Is the student's transformation possible? If not, check the box under the drawing area. . If the student's transformation is possible, then complete the reaction by adding any missing reactants to the left-hand side, and adding required catalysts, inorganic reagents, or other important reaction conditions above and below the arrow. • You do not need to balance the reaction, but be sure every important organic reactant or product is shown. + T X O O лет-ле HO OH HO OH This transformation can't be done in one step.arrow_forwardDetermine the structures of the missing organic molecules in the following reaction: X+H₂O H* H+ Y OH OH Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structures of the missing organic molecules X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. X Sarrow_forwardPredict the major products of this organic reaction. If there aren't any products, because nothing will happen, check the box under the drawing area instead. No reaction. HO. O :☐ + G Na O.H Click and drag to start drawing a structure. XS xs H₂Oarrow_forward
- What are the angles a and b in the actual molecule of which this is a Lewis structure? H H C H- a -H b H Note for advanced students: give the ideal angles, and don't worry about small differences from the ideal groups may have slightly different sizes. a = b = 0 °arrow_forwardWhat are the angles a and b in the actual molecule of which this is a Lewis structure? :0: HCOH a Note for advanced students: give the ideal angles, and don't worry about small differences from the ideal that might be caused by the fact that different electron groups may have slightly different sizes. a = 0 b=0° Sarrow_forwardDetermine the structures of the missing organic molecules in the following reaction: + H₂O +H OH O OH +H OH X Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structure of the missing organic molecule X. Click and drag to start drawing a structure.arrow_forward
- Identify the missing organic reactant in the following reaction: x + x O OH H* + ☑- X H+ O O Х Note: This chemical equation only focuses on the important organic molecules in the reaction. Additional inorganic or small-molecule reactants or products (like H₂O) are not shown. In the drawing area below, draw the skeletal ("line") structure of the missing organic reactant X. Click and drag to start drawing a structure. Carrow_forwardCH3O OH OH O hemiacetal O acetal O neither O 0 O hemiacetal acetal neither OH hemiacetal O acetal O neither CH2 O-CH2-CH3 CH3-C-OH O hemiacetal O acetal CH3-CH2-CH2-0-c-O-CH2-CH2-CH3 O neither HO-CH2 ? 000 Ar Barrow_forwardWhat would be the best choices for the missing reagents 1 and 3 in this synthesis? 1. PPh3 2 2. n-BuLi 3 Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Explanation Check Click and drag to start drawing a structure.arrow_forward
- Predict the products of this organic reaction: NaBH3CN + NH2 ? H+ Click and drag to start drawing a structure. ×arrow_forwardPredict the organic products that form in the reaction below: + OH +H H+ ➤ ☑ X - Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. Garrow_forwardPredict the organic products that form in the reaction below: OH H+ H+ + ☑ Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. ✓ marrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning





