Concept explainers
What is the geometry around the central atom in each of the following molecular models?
(a)
Interpretation:
The geometrical arrangement of charge clouds around the central atom in each of the given molecular models has to be given.
Concept introduction:
VSEPR model:
- Valance Shell Electron-Pair Repulsion (VSEPR) model is used to predict the shapes of the molecules by the electronic structure of its atoms.
- Electrons that are involved in bonds and in lone pairs of electrons should be thought like occupying “charge clouds” or regions of electron density.
- These region of electron density can repel one another and stay as much as possible and results to assume specific shapes.
Rules to predict the shapes of molecules by VSEPR model:
- Write electron-dot structure of the given molecule.
- Count the number of electron charge clouds surrounding the central atom.
- Determine the geometric arrangement of charge clouds surround the each atom and assume its charge clouds can be oriented in the space as far away from one to another as possible.
Explanation of Solution
According to the VSEPR model, a geometry having chemical species with 6 electron domains or electron cloud surrounding the central atom and also have 5 bonding electron pairs and 1 lone pair of electron in the chemical molecule with bond angle of
Hence, the given molecular model indicates square pyramidal geometry.
(b)
Interpretation:
The geometrical arrangement of charge clouds around the central atom in each of the given molecular models has to be given.
Concept introduction:
VSEPR model:
- Valance Shell Electron-Pair Repulsion (VSEPR) model is used to predict the shapes of the molecules by the electronic structure of its atoms.
- Electrons that are involved in bonds and in lone pairs of electrons should be thought like occupying “charge clouds” or regions of electron density.
- These region of electron density can repel one another and stay as much as possible and results to assume specific shapes.
Rules to predict the shapes of molecules by VSEPR model:
- Write electron-dot structure of the given molecule.
- Count the number of electron charge clouds surrounding the central atom.
- Determine the geometric arrangement of charge clouds surround the each atom and assume its charge clouds can be oriented in the space as far away from one to another as possible.
Explanation of Solution
According to the VSEPR model, a geometry having chemical species with 4 electron domains or electron cloud surrounding the central atom and also have 3 bonding electron pairs and 1 lone pair of electron in the chemical molecule with bond angle of
Hence, the given molecular model indicates trigonal pyramidal geometry.
(c)
Interpretation:
The geometrical arrangement of charge clouds around the central atom in each of the given molecular models has to be given.
Concept introduction:
VSEPR model:
- Valance Shell Electron-Pair Repulsion (VSEPR) model is used to predict the shapes of the molecules by the electronic structure of its atoms.
- Electrons that are involved in bonds and in lone pairs of electrons should be thought like occupying “charge clouds” or regions of electron density.
- These region of electron density can repel one another and stay as much as possible and results to assume specific shapes.
Rules to predict the shapes of molecules by VSEPR model:
- Write electron-dot structure of the given molecule.
- Count the number of electron charge clouds surrounding the central atom.
- Determine the geometric arrangement of charge clouds surround the each atom and assume its charge clouds can be oriented in the space as far away from one to another as possible.
Explanation of Solution
According to the VSEPR model, a geometry having chemical species with 6 electron domains or electron cloud surrounding the central atom and also have 4 bonding electron pairs and 2 lone pairs of electron in the chemical molecule with bond angle of
Hence, the given molecular model indicates square planar geometry.
(d)
Interpretation:
The geometrical arrangement of charge clouds around the central atom in each of the given molecular models has to be given.
Concept introduction:
VSEPR model:
- Valance Shell Electron-Pair Repulsion (VSEPR) model is used to predict the shapes of the molecules by the electronic structure of its atoms.
- Electrons that are involved in bonds and in lone pairs of electrons should be thought like occupying “charge clouds” or regions of electron density.
- These region of electron density can repel one another and stay as much as possible and results to assume specific shapes.
Rules to predict the shapes of molecules by VSEPR model:
- Write electron-dot structure of the given molecule.
- Count the number of electron charge clouds surrounding the central atom.
- Determine the geometric arrangement of charge clouds surround the each atom and assume its charge clouds can be oriented in the space as far away from one to another as possible.
Explanation of Solution
According to the VSEPR model, a geometry having chemical species with 3 electron domains or electron cloud surrounding the central atom and also have 3 bonding electron pairs in the chemical molecule with bond angle of
Hence, the given molecular model indicates trigonal planar geometry.
Want to see more full solutions like this?
Chapter 5 Solutions
General Chemistry: Atoms First
- Q1. (a) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH3. Use curved arrows to show the electron movement. (b) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH4*. Use curved arrows to show the electron movement.arrow_forwardWhich is NOT the typical size of a bacteria? 1000 nm 0.001 mm 0.01 mm 1 umarrow_forwardNonearrow_forward
- Show work. don't give Ai generated solutionarrow_forwardPart II. count the expected number of signals in the 1H-NMR spectrum of these compounds HO 0 одев * Cl -cl "D"arrow_forwardPart I. Create a splitting tree diagram to predict the multiplet pattern of proton Hb in the compound below: 3 (Assume that "Jab >>> ³JbC) Ha Hb He он Ha NH2 Ha HCarrow_forward
- SH 0 iq noitzouDarrow_forwardNonearrow_forward+ HCl →? Draw the molecule on the canvas by choosing buttons from the Tools (for bonas), Atoms and Advanced Template toolbars. The single bond is active by default. + M C + H± 2D EXP. CONT. K ? L 1 H₁₂C [1] A HCN O S CH3 CH 3 CI Br HC H₂ CH CH CH3 - P Farrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning