A clinical trial was conducted to test the efficacy of nifedipine, a new drug for reducing chest pain in patients with angina severe enough to require hospitalization. The duration of the study was 14 days in the hospital unless the patient was withdrawn prematurely from therapy, was discharged from the hospital, or died prior to this time. Patients were randomly assigned to either nifedipine or propranolol and were given the same dosage of each drug in identical capsules at level 1 of therapy. If pain did not cease at this level of therapy or if pain recurred after a period of pain cessation, then the patient progressed to level 2, whereby the dosage of each drug was increased according to a pre-specified schedule. Similarly, if pain continued or recurred at level 2, then the patient progressed to level 3, whereby the dosage of the anginal drug was increased again. Patients randomized to either group received nitrates in any amount deemed clinically appropriate to help control pain.
The main objective of the study was to compare the degree of pain relief with nifedipine vs. propranolol. A secondary objective was to better understand the effects of these agents on other physiologic parameters, including heart rate and blood pressure. Data on these latter parameters are given in Data Set NIFED.DAT (at www.cengagebrain.com); the format of this file is shown in Table 5.3
Compare graphically the effects of the treatment regimens on heart rate and blood pressure. Do you notice any difference between treatments?
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Fundamentals of Biostatistics
- Let X be a random variable with support SX = {−3, 0.5, 3, −2.5, 3.5}. Part ofits probability mass function (PMF) is given bypX(−3) = 0.15, pX(−2.5) = 0.3, pX(3) = 0.2, pX(3.5) = 0.15.(a) Find pX(0.5).(b) Find the cumulative distribution function (CDF), FX(x), of X.1(c) Sketch the graph of FX(x).arrow_forwardA well-known company predominantly makes flat pack furniture for students. Variability with the automated machinery means the wood components are cut with a standard deviation in length of 0.45 mm. After they are cut the components are measured. If their length is more than 1.2 mm from the required length, the components are rejected. a) Calculate the percentage of components that get rejected. b) In a manufacturing run of 1000 units, how many are expected to be rejected? c) The company wishes to install more accurate equipment in order to reduce the rejection rate by one-half, using the same ±1.2mm rejection criterion. Calculate the maximum acceptable standard deviation of the new process.arrow_forward5. Let X and Y be independent random variables and let the superscripts denote symmetrization (recall Sect. 3.6). Show that (X + Y) X+ys.arrow_forward
- 8. Suppose that the moments of the random variable X are constant, that is, suppose that EX" =c for all n ≥ 1, for some constant c. Find the distribution of X.arrow_forward9. The concentration function of a random variable X is defined as Qx(h) = sup P(x ≤ X ≤x+h), h>0. Show that, if X and Y are independent random variables, then Qx+y (h) min{Qx(h). Qr (h)).arrow_forward10. Prove that, if (t)=1+0(12) as asf->> O is a characteristic function, then p = 1.arrow_forward
- 9. The concentration function of a random variable X is defined as Qx(h) sup P(x ≤x≤x+h), h>0. (b) Is it true that Qx(ah) =aQx (h)?arrow_forward3. Let X1, X2,..., X, be independent, Exp(1)-distributed random variables, and set V₁₁ = max Xk and W₁ = X₁+x+x+ Isk≤narrow_forward7. Consider the function (t)=(1+|t|)e, ER. (a) Prove that is a characteristic function. (b) Prove that the corresponding distribution is absolutely continuous. (c) Prove, departing from itself, that the distribution has finite mean and variance. (d) Prove, without computation, that the mean equals 0. (e) Compute the density.arrow_forward
- 1. Show, by using characteristic, or moment generating functions, that if fx(x) = ½ex, -∞0 < x < ∞, then XY₁ - Y2, where Y₁ and Y2 are independent, exponentially distributed random variables.arrow_forward1. Show, by using characteristic, or moment generating functions, that if 1 fx(x): x) = ½exarrow_forward1990) 02-02 50% mesob berceus +7 What's the probability of getting more than 1 head on 10 flips of a fair coin?arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill