Concept explainers
Interpretation For the following statements, true statements should be found and for the false statements it should be corrected.
Concept introduction:
- Kinetic molecular theory explains the properties of ideal gas. From the postulates of kinetic molecular theory it is clear that kinetic energy of gas particle is directly proportional to the Kelvin temperature of the gas.
Average kinetic energy of gas can be determined as,
- The average velocity can be determined,
Ideal gas law tends to hold best at low pressure and high temperatureA modified ideal gas equation on account of molecular size and molecular interaction forces is termed as Van der Waals equation.
That is,
‘a’ and ‘b’ is called Van der Waals coefficient and are characteristic of the individual gas
Where,
P = pressure in atmospheres
V= volumes in liters
n = number of moles
R =universal gas constant (
T = temperature in kelvins
- At constant temperature and volume, the number of collision pre unit area increases by increasing the number of moles per unit area.
Trending nowThis is a popular solution!
Learn your wayIncludes step-by-step video
Chapter 5 Solutions
Chemistry with Access Code, Hybrid Edition
- Consider these four gas samples, all at the same temperature. The larger boxes have twice the volume of the smaller boxes. Rank the gas samples with respect to: (a) pressure, (b) density, (c) average kinetic energy, and (d) average molecular speed. (Green spheres are He; violet spheres are Ne.)arrow_forwardExplain why the plot of PV for CO2 differs from that of an ideal gas.arrow_forwardNitrogen monoxide gas reacts with oxygen gas to produce nitrogen dioxide gas. What volume of nitrogen dioxide is produced from the reaction of 1 L nitrogen monoxide gas with 3 L oxygen gas? What volume, if any, of the reactants will remain after the reaction ends? Assume all volumes are measured at the same pressure and temperature.arrow_forward
- Referring to exercises 1.6 and 1.7, does it matter if the pressure difference is caused by an ideal gas or a non-ideal gas? Explain your answer.arrow_forwardDescribe the factors responsible for the deviation of the behavior of real gases from that of an ideal gas.arrow_forwardDescribe what happens o the average kinetic energy of ideal gas molecules when the conditions are changed as follows: (a) The pressure of the gas is increased by reducing the volume at constant temperature. (b) The pressure of the gas is increased by increasing the temperature at constant volume. (c) The average velocity of the molecules is increased by a factor of 2.arrow_forward
- 82 Why do heavier gases move more slowly than light gases at the same temperature?arrow_forward94 Mining engineers often have to deal with gases when planning for the excavation of coal. Some of these gases, including methane, can be captured and used as fuel to support the mining operation. For a particular mine, 2.4 g of CH4 is present for every 100.0 g of coal that is extracted. If 45.6% of the methane can be captured and the daily production of the mine is 580 metric tons of coal, how many moles of methane could be obtained per day?arrow_forwardHydrogen azide, HN3, decomposes on heating by the following unbalanced equation: HN3O(g)N2(g)+H2(g) If 3.0 atm of pure HN3(g) is decomposed initially, what is the final total pressure in the reaction container? What are the partial pressures of nitrogen and hydrogen gas? Assume the volume and temperature of the reaction container are constant.arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning