Chemistry with Access Code, Hybrid Edition
9th Edition
ISBN: 9781285188492
Author: Steven S. Zumdahl
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 140AE
Interpretation Introduction
Interpretation:
By analyzing the diagram, it should be explained the pressure change in the container A
Concept introduction:
- Effusion is used to describe the passage of a gas through a tiny particle into an evacuated chamber.
- The rate of effusion is the measure speed at which the gas is transferred to the chamber
- According to Thomas Graham the rate of effusion of a gas is inversely proportional to the square root of the mass of its particles.
- The relative rate of effusion of two gases at the same temperature and pressure are the inverse ratio of the square root of the masses of the gases particles. That is,
Graham’s law of effusion,
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 5 Solutions
Chemistry with Access Code, Hybrid Edition
Ch. 5 - Prob. 1RQCh. 5 - Prob. 2RQCh. 5 - Prob. 3RQCh. 5 - Prob. 4RQCh. 5 - Prob. 5RQCh. 5 - Prob. 6RQCh. 5 - Prob. 7RQCh. 5 - Prob. 8RQCh. 5 - Prob. 9RQCh. 5 - Why do real gases not always behave ideally? Under...
Ch. 5 - Prob. 3ALQCh. 5 - Prob. 4ALQCh. 5 - Prob. 6ALQCh. 5 - Prob. 8ALQCh. 5 - Prob. 11ALQCh. 5 - Prob. 12ALQCh. 5 - Prob. 15ALQCh. 5 - Prob. 16ALQCh. 5 - Draw molecular-level views that show the...Ch. 5 - Prob. 20QCh. 5 - Prob. 21QCh. 5 - Prob. 22QCh. 5 - Prob. 23QCh. 5 - As weather balloons rise from the earths surface,...Ch. 5 - Prob. 25QCh. 5 - Consider two different containers, each filled...Ch. 5 - Prob. 27QCh. 5 - Prob. 28QCh. 5 - Prob. 29QCh. 5 - Prob. 30QCh. 5 - Prob. 31QCh. 5 - Prob. 32QCh. 5 - Prob. 33QCh. 5 - Without looking at a table of values, which of the...Ch. 5 - Prob. 35QCh. 5 - Prob. 36QCh. 5 - Prob. 37ECh. 5 - Prob. 38ECh. 5 - A sealed-tube manometer (as shown below) can be...Ch. 5 - Prob. 40ECh. 5 - A diagram for an open-tube manometer is shown...Ch. 5 - Prob. 42ECh. 5 - Prob. 43ECh. 5 - Prob. 44ECh. 5 - Prob. 45ECh. 5 - Prob. 46ECh. 5 - Prob. 47ECh. 5 - Prob. 48ECh. 5 - Prob. 49ECh. 5 - Prob. 50ECh. 5 - The Steel reaction vessel of a bomb calorimeter,...Ch. 5 - A 5.0-L flask contains 0.60 g O2 at a temperature...Ch. 5 - Prob. 53ECh. 5 - A person accidentally swallows a drop of liquid...Ch. 5 - A gas sample containing 1.50 moles at 25C exerts a...Ch. 5 - Prob. 56ECh. 5 - Prob. 57ECh. 5 - What will be the effect on the volume of an ideal...Ch. 5 - Prob. 59ECh. 5 - Prob. 60ECh. 5 - An ideal gas is contained in a cylinder with a...Ch. 5 - Prob. 62ECh. 5 - A sealed balloon is filled with 1.00 L helium at...Ch. 5 - Prob. 64ECh. 5 - Consider the following reaction:...Ch. 5 - A student adds 4.00 g of dry ice (solid CO2) to an...Ch. 5 - Air bags are activated when a severe impact causes...Ch. 5 - Concentrated hydrogen peroxide solutions are...Ch. 5 - In 1897 the Swedish explorer Andre tried to reach...Ch. 5 - Sulfur trioxide, SO3, is produced in enormous...Ch. 5 - A 15.0-L rigid container was charged with 0.500...Ch. 5 - An important process for the production of...Ch. 5 - Consider the reaction between 50.0 mL liquid...Ch. 5 - Urea (H2NCONH2) is used extensively as a nitrogen...Ch. 5 - Prob. 75ECh. 5 - Prob. 76ECh. 5 - Prob. 77ECh. 5 - A compound has the empirical formula CHCl. A...Ch. 5 - Prob. 79ECh. 5 - Given that a sample of air is made up of nitrogen,...Ch. 5 - Prob. 81ECh. 5 - Prob. 82ECh. 5 - A piece of solid carbon dioxide, with a mass of...Ch. 5 - Prob. 84ECh. 5 - Consider the flasks in the following diagram. What...Ch. 5 - Consider the flask apparatus in Exercise 85, which...Ch. 5 - Prob. 87ECh. 5 - At 0C a 1.0-L flask contains 5.0 102 mole of N2,...Ch. 5 - Prob. 89ECh. 5 - A tank contains a mixture of 52.5 g oxygen gas and...Ch. 5 - Prob. 91ECh. 5 - Helium is collected over water at 25C and 1.00 atm...Ch. 5 - At elevated temperatures, sodium chlorate...Ch. 5 - Xenon and fluorine will react to form binary...Ch. 5 - Methanol (CH3OH) can be produced by the following...Ch. 5 - In the Mthode Champenoise, grape juice is...Ch. 5 - Hydrogen azide, HN3, decomposes on heating by the...Ch. 5 - Prob. 98ECh. 5 - Prob. 99ECh. 5 - The oxides of Group 2A metals (symbolized by M...Ch. 5 - Prob. 101ECh. 5 - Prob. 102ECh. 5 - Prob. 103ECh. 5 - Prob. 104ECh. 5 - Prob. 105ECh. 5 - Prob. 106ECh. 5 - Prob. 107ECh. 5 - Prob. 108ECh. 5 - Prob. 109ECh. 5 - Prob. 110ECh. 5 - Prob. 111ECh. 5 - Prob. 112ECh. 5 - Prob. 113ECh. 5 - Prob. 114ECh. 5 - Prob. 115ECh. 5 - Prob. 116ECh. 5 - Use the data in Table 84 to calculate the partial...Ch. 5 - Prob. 118ECh. 5 - Prob. 119ECh. 5 - Prob. 120ECh. 5 - Prob. 121ECh. 5 - Prob. 122ECh. 5 - Prob. 123AECh. 5 - At STP, 1.0 L Br2 reacts completely with 3.0 L F2,...Ch. 5 - Prob. 125AECh. 5 - Prob. 126AECh. 5 - Prob. 127AECh. 5 - Cyclopropane, a gas that when mixed with oxygen is...Ch. 5 - The nitrogen content of organic compounds can be...Ch. 5 - Prob. 130AECh. 5 - A 15.0L tank is filled with H2 to a pressure of...Ch. 5 - A spherical glass container of unknown volume...Ch. 5 - Prob. 133AECh. 5 - A 20.0L stainless steel container at 25C was...Ch. 5 - Metallic molybdenum can be produced from the...Ch. 5 - Prob. 136AECh. 5 - Prob. 137AECh. 5 - One of the chemical controversies of the...Ch. 5 - An organic compound contains C, H, N, and O....Ch. 5 - Prob. 140AECh. 5 - Prob. 141CWPCh. 5 - Prob. 142CWPCh. 5 - A certain flexible weather balloon contains helium...Ch. 5 - A large flask with a volume of 936 mL is evacuated...Ch. 5 - A 20.0L nickel container was charged with 0.859...Ch. 5 - Consider the unbalanced chemical equation below:...Ch. 5 - Prob. 147CWPCh. 5 - Which of the following statements is(are) true? a....Ch. 5 - A chemist weighed out 5.14 g of a mixture...Ch. 5 - A mixture of chromium and zinc weighing 0.362 g...Ch. 5 - Prob. 151CPCh. 5 - You have an equimolar mixture of the gases SO2 and...Ch. 5 - Methane (CH4) gas flows into a combustion chamber...Ch. 5 - Prob. 154CPCh. 5 - Prob. 155CPCh. 5 - Prob. 156CPCh. 5 - You have a helium balloon at 1.00 atm and 25C. You...Ch. 5 - We state that the ideal gas law tends to hold best...Ch. 5 - You are given an unknown gaseous binary compound...Ch. 5 - Prob. 160CPCh. 5 - In the presence of nitric acid, UO2+ undergoes a...Ch. 5 - Silane, SiH4, is the silicon analogue of methane,...Ch. 5 - Prob. 163IPCh. 5 - Prob. 164IPCh. 5 - Prob. 165MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- If equal masses of O2 and N2 are placed in separate containers of equal volume at the same temperature, which of the following statements is true? If false, explain why it is false. (a) The pressure in the flask containing N2 is greater than that in the flask containing O2. (b) There are more molecules in the flask containing O2 than in the flask containing N2.arrow_forwardLiquid oxygen was first prepared by heating potassium chlorate, KClO3, in a closed vessel to obtain oxygen at high pressure. The oxygen was cooled until it liquefied. 2KClO3(s)2KCl(s)+3O2(g) If 171 g of potassium chlorate reacts in a 2.70-L vessel, which was initially evacuated, what pressure of oxygen will be attained when the temperature is finally cooled to 25C? Use the preceding chemical equation and ignore the volume of solid product.arrow_forwardA typical barometric pressure in Redding. California, is about 750 mm Hg. Calculate this pressure in atm and kPa.arrow_forward
- A study of climbers who reached the summit of Mount Everest without supplemental oxygen showed that the partial pressures of O2 and CO2 in their lungs were 35 mm Mg and 7.5 mm Hg, respectively. The barometric pressure at the summit was 253 mm Hg. Assume the lung gases are saturated with moisture at a body temperature of 37 C [which means the partial pressure of water vapor in the lungs is P(H2O) = 47.1 mm Hg]. If you assume the lung gases consist of only O2, N2, CO2, and H2O, what is the partial pressure of N2?arrow_forwardThe hydrocarbon octane (C8H18) bums to give CO2 and water vapor: 2 C8H18(g) + 25 O2(g) 16 CO2(g) + 18 H2O(g) If a 0.048-g sample of octane burns completely in O2, what will be the pressure of water vapor in a 4.75-L flask at 30.0 C? If the O2 gas needed for complete combustion was contained in a 4.75-L flask at 22 C, what would its pressure be?arrow_forwardRaoul Pictet, the Swiss physicist who first liquefied oxygen, attempted to liquefy hydrogen. He heated potassium formate, KCHO2, with KOH in a closed 2.50-Lvessel. KCHO2(s)+KOH(s)K2CO3(s)+H2(g) If 75.0 g of potassium formate reacts in a 2.50-L vessel, which was initially evacuated, what pressure of hydrogen will be attained when the temperature is finally cooled to 25C? Use the preceding chemical equation and ignore the volume of solid product.arrow_forward
- When acetylene, C2H2, is burned in oxygen, carbon dioxide and steam are formed. A sample of acetylene with a volume of 7.50 L and a pressure of 1.00 atm is burned in excess oxygen at 225C. The products are transferred without loss to a 10.0-L. flask at the same temperature. (a) Write a balanced equation for the reaction. (b) What is the total pressure of the products in the 10.0-L flask? (c) What is the partial pressure of each of the products in the flask?arrow_forwardA chemist weighed out 5.14 g of a mixture containing unknown amounts of BaO(s) and CaO(s) and placed the sample in a 1.50-L flask containing CO2(g) at 30.0C and 750. torr. After the reaction to form BaCO3(s) and CaCO3(s) was completed, the pressure of CO2(g) remaining was 230. torr. Calculate the mass percentages of CaO(s) and BaO(s) in the mixture.arrow_forwardAs 1 g of (lie radioactive element radium decays over 1 year. k produces 1.161018 alpha particles (helium nuclei). Each alpha particle becomes an atom of helium gas. What is the pressure ¡n pascal of the helium gas produced if it occupies a volume of 125 mL at a temperature of 25 C?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning