COLLEGE PHYSICS,VOL.1
2nd Edition
ISBN: 9781111570958
Author: Giordano
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 31P
To determine
The tension when rock is at the bottom.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
During their physics field trip to the amusement park, Tyler and Maria took a rider on the Whirligig. The Whirligig ride consists of long swings which spin in a circle at relatively high speeds. As part of their lab, Tyler and Maria estimate that the riders travel through a circle with a radius of 6.5 m and make one turn every 5.8 seconds. Determine the speed of the riders on the Whirligig.
A car initially traveling eastward turns north by traveling in a circular path at uniform speed as in the figure below. The length of the arc ABC is 254 m, and the car completes the turn in 35.0 s.
(a) What is the acceleration when the car is at B located at an angle of 35.0°? Express your answer in terms of the unit vectors î and ĵ.____ m/s2 î + ____ m/s2 ĵ(b) Determine the car's average speed.____ m/s(c) Determine its average acceleration during the 35.0-s interval.___ m/s2 î + m/s2 ĵ
After landing on an exoplanet, an astronaut constructs a simple pendulum of length 49 cm. The pendulum completes 89 full swing cycles in a time of 101 s.
What is the magnitude of the gravitational acceleration in m/s2 on the exoplanet? Give your answer to 2 decimal places.
Chapter 5 Solutions
COLLEGE PHYSICS,VOL.1
Ch. 5.1 - Velocity and Acceleration in Circular Motion...Ch. 5.1 - Prob. 5.2CCCh. 5.2 - Prob. 5.3CCCh. 5.3 - Prob. 5.5CCCh. 5.4 - Prob. 5.6CCCh. 5.4 - Prob. 5.7CCCh. 5 - Prob. 1QCh. 5 - Prob. 2QCh. 5 - Prob. 3QCh. 5 - Consider the Cavendish experiment in Figure 5.22....
Ch. 5 - Prob. 5QCh. 5 - Prob. 6QCh. 5 - Prob. 7QCh. 5 - What force makes it possible for a car to move...Ch. 5 - Prob. 9QCh. 5 - Prob. 10QCh. 5 - Prob. 11QCh. 5 - Prob. 12QCh. 5 - Prob. 13QCh. 5 - Prob. 14QCh. 5 - Prob. 15QCh. 5 - Prob. 16QCh. 5 - Prob. 17QCh. 5 - Prob. 18QCh. 5 - Plutos mass. In 1978, it was discovered that Pluto...Ch. 5 - Prob. 1PCh. 5 - Prob. 2PCh. 5 - Prob. 3PCh. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - Prob. 6PCh. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - Prob. 9PCh. 5 - Prob. 10PCh. 5 - A compact disc spins at 2.5 revolutions per...Ch. 5 - Prob. 12PCh. 5 - Prob. 13PCh. 5 - Prob. 14PCh. 5 - Prob. 15PCh. 5 - Consider the motion of a rock tied to a string of...Ch. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - Prob. 20PCh. 5 - Prob. 21PCh. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Prob. 25PCh. 5 - Prob. 26PCh. 5 - Prob. 27PCh. 5 - Prob. 29PCh. 5 - Consider a Ferris wheel in which the chairs hang...Ch. 5 - Prob. 31PCh. 5 - Prob. 32PCh. 5 - Prob. 33PCh. 5 - Prob. 34PCh. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - Prob. 40PCh. 5 - Prob. 41PCh. 5 - Prob. 42PCh. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - Prob. 45PCh. 5 - Prob. 46PCh. 5 - Prob. 47PCh. 5 - Prob. 48PCh. 5 - Prob. 50PCh. 5 - Prob. 51PCh. 5 - Prob. 52PCh. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - Prob. 55PCh. 5 - Prob. 56PCh. 5 - Prob. 57PCh. 5 - Prob. 58PCh. 5 - Prob. 59PCh. 5 - Prob. 60PCh. 5 - Prob. 61PCh. 5 - Prob. 62PCh. 5 - Prob. 63PCh. 5 - Prob. 64PCh. 5 - Prob. 65PCh. 5 - Prob. 66PCh. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - Prob. 70PCh. 5 - Prob. 71PCh. 5 - Prob. 72PCh. 5 - A rock of mass m is tied to a string of length L...Ch. 5 - Prob. 74PCh. 5 - Prob. 75PCh. 5 - Prob. 76PCh. 5 - Prob. 77P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You are designing the section of a roller coaster ride shown in the figure. Previous sections of the ride give the train a speed of 10.7 m/s at the top of the incline, which is h = 36.7 m above the ground. As any good engineer would, you begin your design with safety in mind. Your local government's safety regulations state that the riders' centripetal acceleration should be no more than n = 1.85 g at the top of the hump and no more than N = 5.53 g at the bottom of the loop. For this initial phase of your design, you decide to ignore the effects of friction and air resistance. (Figure not to scale) h Roop terms of use contact us help about us privacy policy careersarrow_forwardYou are designing the section of a roller coaster ride shown in the figure. Previous sections of the ride give the train a speed of 15.5 m/s at the top of the incline, which is h = 36.7 m above the ground. As any good engineer would, you begin your design with safety in mind. Your local government's safety regulations state that the riders' centripetal acceleration should be no more than n = 1.77 g at the top of the hump and no more than N = 5.37 g at the bottom of the loop. For this initial phase of your design, you decide to ignore the effects of friction and air resistance. (Figure not to scale) What is the minimum radius Rhump you can use for the semi-circular hump? Rhump = What is the minimum radius Roop you can use for the vertical loop? Roop= R₁000 m marrow_forwardYou are designing the section of a roller coaster ride shown in the figure. Previous sections of the ride give the train a speed of 10.7 m/s at the top of the incline, which is h=37.5 m above the ground. As any good engineer would, you begin your design with safety in mind. Your local government's safety regulations state that the riders' centripetal acceleration should be no more than n=1.73 g at the top of the hump and no more than N=5.45 gat the bottom of the loop. For this initial phase of your design, you decide to ignore the effects of friction and air resistance. (Figure not to scale)What is the minimum radius Rhump you can use for the semi-circular hump?What is the minimum radius Rloop you can use for the vertical loop?arrow_forward
- (Figure 1) A bob of mass m is suspended from a fixed point with a massless string of length L (i.e., it is a pendulum). You are to investigate the motion in which the string moves in a cone with half-angle . Figure A What tangential speed, v, must the bob have so that it moves in a horizontal circle with the string always making an angle from the vertical? Express your answer in terms of some or all of the variables m, L, and 0, as well as the free-fall acceleration g. ► View Available Hint(s) IVE ΑΣΦ V = Submit Part B How long does it take the bob to make one full revolution (one complete trip around the circle)? Express your answer in terms of some or all of the variables m, L, and 0, as well as the free-fall acceleration g. ► View Available Hint(s) [35] ΑΣΦ Submit Provide Feedback ? ? Ac Goarrow_forwardYou are designing the section of a roller coaster ride shown in the figure. Previous sections of the ride give the train a speed of 10.7 m/s at the top of the incline, which is h = 36.3 m above the ground. As any good engineer would, you begin your design with safety in mind. Your local government's safety regulations state that the riders' centripetal acceleration should be no more than n = 1.93 g at the top of the hump and no more than N = 5.77 g at the bottom of the loop. For this initial phase of your design, you decide to ignore the effects of friction and air resistance. (Figure not to scale) Rhump What is the minimum radius Rhump you can use for the semi-circular hump? = What is the minimum radius Roop you can use for the vertical loop? R₁00p R. = hump Roop m marrow_forwardYou are designing the section of a roller coaster ride shown in the figure. Previous sections of the ride give the train a speed of 11.3 m/s at the top of the incline, which is h = 37.5 m above the ground. As any good engineer would, you begin your design with safety in mind. Your local government's safety regulations state that the riders' centripetal acceleration should be no more than N = 5.37 g at the top of the hump and no more than N = 5.37 g at the bottom of the loop. For this initial phase of your design, you decide to ignore the effects of friction and air resistance. (Figure not to scale)arrow_forward
- A student is swinging a ball of mass 0.323 kg in a vertical circle at constant speed, as shown in the figure below. (g indicates the direction of the acceleration due to gravity: directly downward.) The length of the string is 0.76 m. She measures the tension and finds that it is 5.601 times larger at the bottom of the circle than at the top. What is the speed of the swinging mass?arrow_forwardPart A Comets travel around the sun in elliptical orbits with large eccentricities. If a comet has speed 2.1×104 m/s when at a distance of 2.6x1011 m from the center of the sun, what is its speed when at a distance of 4.0x1010 m. Express your answer in meters per second. νη ΑΣφ ? m/sarrow_forwardA small car with mass 1250 [kg] travels at constant speed on the inside ofa track that is a vertical circle with radius 7.00 [m] (see figure on the right).The normal force exerted by the track on the car when it is at the top ofthe track (point B) is 6.58 × 10^3 [N]. a. What is the normal force on the car when it is at the bottomof the track (point A)?b. What is the velocity of the car at point B?arrow_forward
- A bead of mass m slides without friction along a curved wire with shape z = f(r) where r = Vx2 + y?, i.e. the distance from the z-axis. The wire is rotated around the z-axis at a constant angular velocity w. Gravity acts downward along the z-axis with a constant acceleration g. a) Using Newton's second law in an inertial frame, derive an expression for radius ro of a fixed circular orbit (i.e. a solution with r = ro = const.). What is the normal force the wire applies to the bead to keep it in a circular orbit? b) Show that the equation of motion for r(t) (general equation not the circular motion) is F(1+ f'(r)²) + r² f' (r)f" (r) + gf'(r) - w²r = 0. Using this verify your answer to part (a). c) Consider small displacements from the circular orbit, r = ro+e(t). Derive a condition on the function f(r) such that a circular orbit at r = ro is stable. d) Find the force on the bead in the o direction, i.e. perpendicular to the plane of wire. The angular velocity is w = i.e. do not assume r…arrow_forwardDuring their field trip to the amusement park, Eli and Frank took a rider on the Whirligig. The Whirligig ride consists of long swings which spin in a circle at relatively high speeds. They estimate that the riders travel through a circle with a radius of 6.5 m and make one turn every 5.8 seconds. Determine the speed of the riders on the Whirligig.arrow_forwardA motorist travels along a vertical circle with a diameter of 10.0 m. After one successful revolution, he notices that his speed at the bottom of the pathway is 6.50 m/s. The mass of the motorists is 70.0 kg. What is the radial acceleration of the motorist at the bottom of the pathway?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY