COLLEGE PHYSICS,VOL.1
COLLEGE PHYSICS,VOL.1
2nd Edition
ISBN: 9781111570958
Author: Giordano
Publisher: CENGAGE L
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 62P

(a)

To determine

The difference in the value of g between his head and his feet.

(a)

Expert Solution
Check Mark

Answer to Problem 62P

The difference in the value of g between his head and his feet is 5.6×106m/s2_.

Explanation of Solution

Write the expression for the g value of his feet.

    gfeet=GMEarthrEarth2=g        (I)

Here, gfeet is the force of gravity at his feet, G is the gravitational constant, MEarth is the mass of the Earth, rEarth is the radius of Earth.

Write the expression for the g value of his head.

    ghead=GMEarth(rEarth+h)2        (II)

Here, ghead is the force of gravity at his head, h is the height of the person.

Use equation (II) and (I) to solve for the ratio of value of g between his head and his feet.

    gheadgfeet=GMEarth(rEarth+h)2GMEarthrEarth2=rEarth2(rEarth+h)2        (III)

Use equation (I) in (III) to solve for ghead.

    ghead=(rEarth2(rEarth+h)2)gfeet=(rEarth2(rEarth+h)2)g        (IV)

Write the expression for the difference in the value of g between his head and his feet.

    gfeetghead=g(rEarth2(rEarth+h)2)g=g(1rEarth2(rEarth+h)2)        (V)

Conclusion:

Substitute 6.37×106m for rEarth, 6.0ft for h, 9.8m/s2 for g in equation (V) to find the difference in the value of g between his head and his feet.

    gfeetghead=(9.8m/s2)(1(6.37×106m)2(6.37×106m+6.0ft×0.3048m1ft)2)=5.6×106m/s2

Therefore, the difference in the value of g between his head and his feet is 5.6×106m/s2_.

(b)

To determine

The difference in the gravitational acceleration between his head and his feet.

(b)

Expert Solution
Check Mark

Answer to Problem 62P

The difference in the gravitational acceleration between his head and his feet is 37.6m/s2_.

Explanation of Solution

Write the expression for the magnitude of acceleration near the black hole at the person’s feet.

    abh,feet=GMbhrE2        (VI)

Here, abh,feet is the acceleration near the black hole at the person’s feet, Mbh is the mass of the black hole.

Write the expression for the magnitude of acceleration near the black hole at the person’s head.

    abh,head=GMbh(rE+h)2        (VII)

Here, abh,head is the acceleration near the black hole at the person’s head.

Use equation (VI) and (VII) to solve for the ratio of value of acceleration between his head and his feet.

    abh,headabh,feet=GMbh(rEarth+h)2GMbhrEarth2=rEarth2(rEarth+h)2        (VIII)

Use equation (VIII) and (VI) to solve for abh,head.

    abh,head=(rEarth2(rEarth+h)2)abh,feet=(rEarth2(rEarth+h)2)(GMbhrE2)        (IX)

Write the expression for the difference in the value of acceleration between his head and his feet.

    abh,feetabh,head=(GMbhrE2)(rEarth2(rEarth+h)2)(GMbhrE2)=(GMbhrE2)[1(rEarth2(rEarth+h)2)]        (X)

Conclusion:

Substitute 6.37×106m for rEarth, 6.0ft for h, 9.8m/s2 for g, 20×1.99×1030kg for Mbh, 6.67×1011Nm2/kg2 for G in equation (X) to find the difference in the value of acceleration between his head and his feet.

    abh,feetabh,head=[(6.67×1011Nm2/kg2)(20×1.99×1030kg)(6.37×106m)2][1(6.37×106m)2(6.37×106m+6.0ft×0.3048m1ft)2]=37.6m/s2

Therefore, the difference in the gravitational acceleration between his head and his feet is 37.6m/s2_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
How can you tell which vowel is being produced here ( “ee,” “ah,” or “oo”)? Also, how would you be able to tell for the other vowels?
You want to fabricate a soft microfluidic chip like the one below. How would you go about fabricating this chip knowing that you are targeting a channel with a square cross-sectional profile of 200 μm by 200 μm. What materials and steps would you use and why? Disregard the process to form the inlet and outlet. Square Cross Section
1. What are the key steps involved in the fabrication of a semiconductor device. 2. You are hired by a chip manufacturing company, and you are asked to prepare a silicon wafer with the pattern below. Describe the process you would use. High Aspect Ratio Trenches Undoped Si Wafer P-doped Si 3. You would like to deposit material within a high aspect ratio trench. What approach would you use and why? 4. A person is setting up a small clean room space to carry out an outreach activity to educate high school students about patterning using photolithography. They obtained a positive photoresist, a used spin coater, a high energy light lamp for exposure and ordered a plastic transparency mask with a pattern on it to reduce cost. Upon trying this set up multiple times they find that the full resist gets developed, and they are unable to transfer the pattern onto the resist. Help them troubleshoot and find out why pattern of transfer has not been successful. 5. You are given a composite…

Chapter 5 Solutions

COLLEGE PHYSICS,VOL.1

Ch. 5 - Prob. 5QCh. 5 - Prob. 6QCh. 5 - Prob. 7QCh. 5 - What force makes it possible for a car to move...Ch. 5 - Prob. 9QCh. 5 - Prob. 10QCh. 5 - Prob. 11QCh. 5 - Prob. 12QCh. 5 - Prob. 13QCh. 5 - Prob. 14QCh. 5 - Prob. 15QCh. 5 - Prob. 16QCh. 5 - Prob. 17QCh. 5 - Prob. 18QCh. 5 - Plutos mass. In 1978, it was discovered that Pluto...Ch. 5 - Prob. 1PCh. 5 - Prob. 2PCh. 5 - Prob. 3PCh. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - Prob. 6PCh. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - Prob. 9PCh. 5 - Prob. 10PCh. 5 - A compact disc spins at 2.5 revolutions per...Ch. 5 - Prob. 12PCh. 5 - Prob. 13PCh. 5 - Prob. 14PCh. 5 - Prob. 15PCh. 5 - Consider the motion of a rock tied to a string of...Ch. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - Prob. 20PCh. 5 - Prob. 21PCh. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Prob. 25PCh. 5 - Prob. 26PCh. 5 - Prob. 27PCh. 5 - Prob. 29PCh. 5 - Consider a Ferris wheel in which the chairs hang...Ch. 5 - Prob. 31PCh. 5 - Prob. 32PCh. 5 - Prob. 33PCh. 5 - Prob. 34PCh. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - Prob. 40PCh. 5 - Prob. 41PCh. 5 - Prob. 42PCh. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - Prob. 45PCh. 5 - Prob. 46PCh. 5 - Prob. 47PCh. 5 - Prob. 48PCh. 5 - Prob. 50PCh. 5 - Prob. 51PCh. 5 - Prob. 52PCh. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - Prob. 55PCh. 5 - Prob. 56PCh. 5 - Prob. 57PCh. 5 - Prob. 58PCh. 5 - Prob. 59PCh. 5 - Prob. 60PCh. 5 - Prob. 61PCh. 5 - Prob. 62PCh. 5 - Prob. 63PCh. 5 - Prob. 64PCh. 5 - Prob. 65PCh. 5 - Prob. 66PCh. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - Prob. 70PCh. 5 - Prob. 71PCh. 5 - Prob. 72PCh. 5 - A rock of mass m is tied to a string of length L...Ch. 5 - Prob. 74PCh. 5 - Prob. 75PCh. 5 - Prob. 76PCh. 5 - Prob. 77P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY