![COLLEGE PHYSICS,VOL.1](https://www.bartleby.com/isbn_cover_images/9781111570958/9781111570958_largeCoverImage.gif)
(a)
The maximum gravitational force the tractor could exert on the asteroid.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 77P
The maximum gravitational force the tractor could exert on the asteroid
Explanation of Solution
The gravitational force of an object on the Earth’s surface is determined by Newton’s universal law of gravitation.
Here,
The mass of the asteroid is given by the density multiplied by the volume.
Use equation (II) in (I),
Conclusion:
Substitute
Therefore, the maximum gravitational force the tractor could exert on the asteroid
(b)
The acceleration of the Asteroid.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 77P
The acceleration of the Asteroid is
Explanation of Solution
The expression for the acceleration of the asteroid is given by,
Conclusion:
Substitute
Therefore, The acceleration of the Asteroid is
(C)
The deflection of the asteroid if the tractor stayed near the asteroid for 1 year.
(C)
![Check Mark](/static/check-mark.png)
Answer to Problem 77P
The deflection of the asteroid if the tractor stayed near the asteroid for 1 year is
Explanation of Solution
The expression for the deflection is given by,
Here,
Assume the initial velocity as zero but the time taken is given by,
Conclusion:
Substitute
Therefore, The deflection of the asteroid if the tractor stayed near the asteroid for 1 year is
(d)
Whether the asteroid hits the Earth or not.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 77P
Yes, the asteroid will hit the Earth.
Explanation of Solution
The expression for the deflection is given by,
Here,
Assume the initial velocity as zero equation (V) changes to,
Conclusion:
Substitute
It is about 10 years,
The time taken by the asteroid to cover the distance to Earth at a constant velocity is,
It is about
Therefore, , the asteroid will hit the Earth.
Want to see more full solutions like this?
Chapter 5 Solutions
COLLEGE PHYSICS,VOL.1
- Please solve the problem step by step with explanations along each step explaining what's been done.Thank you!!arrow_forwardFigure 8.14 shows a cube at rest and a small object heading toward it. (a) Describe the directions (angle 1) at which the small object can emerge after colliding elastically with the cube. How does 1 depend on b, the so-called impact parameter? Ignore any effects that might be due to rotation after the collision, and assume that the cube is much more massive than the small object. (b) Answer the same questions if the small object instead collides with a massive sphere.arrow_forward2. A projectile is shot from a launcher at an angle 0,, with an initial velocity magnitude vo, from a point even with a tabletop. The projectile hits an apple atop a child's noggin (see Figure 1). The apple is a height y above the tabletop, and a horizontal distance x from the launcher. Set this up as a formal problem, and solve for x. That is, determine an expression for x in terms of only v₁, 0, y and g. Actually, this is quite a long expression. So, if you want, you can determine an expression for x in terms of v., 0., and time t, and determine another expression for timet (in terms of v., 0.,y and g) that you will solve and then substitute the value of t into the expression for x. Your final equation(s) will be called Equation 3 (and Equation 4).arrow_forward
- Draw a phase portrait for an oscillating, damped spring.arrow_forwardA person is running a temperature of 41.0°C. What is the equivalent temperature on the Fahrenheit scale? (Enter your answer to at least three significant figures.) °Farrow_forwardWhat is the period of a rock of mass 2.0kg tied to the end of a spring 0.625m long string that hangs in a doorway and has an elastic constant of 40N/m?arrow_forward
- Give an example of friction speeding up an object.arrow_forwardWhich is the higher temperature? (Assume temperatures to be exact numbers.) (a) 272°C or 272°F? 272°C 272°F They are the same temperature. (b) 200°C or 368°F? 200°C 368°F They are the same temperature.arrow_forwardWhat is the direction of a force vector given by ~v = −6Nˆi − 8Nˆj?arrow_forward
- What can be said of the position vector of an object far from any influences on its motion?arrow_forward་ Consider a ball sliding down a ramp as shown above. The ball is already in motion at the position 1. Which direction best approximates the direction of acceleration vector a when the object is at position 2?arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)