COLLEGE PHYSICS,VOL.1
2nd Edition
ISBN: 9781111570958
Author: Giordano
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 11Q
To determine
The way to which dark matter might be detected and studied through the observation of normal matter.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In 1999, scientists discovered a new class of black holes with masses 100 to 10,000 times the mass of our sun that occupy less space than our moon. Suppose that one of these black holes has a mass of 1×1021×102 suns and a radius equal to one-half the radius of our moon.
A)What is the density of the black hole in g/cm3g/cm3? The radius of our sun is 7.0×105km7.0×105km, and it has an average density of 1.4×103kg/m31.4×103kg/m3. The diameter of the moon is 2.16×1032.16×103 miles. 1km=0.6214mile1km=0.6214mile.?
A black hole has an event horizon radius of 5.00××1033 m.
a) What is its mass?
b) Determine the gravitational acceleration it produces at a distance of 5.01××1033 m from its center.
c) Determine the escape speed at a distance of 5.01××1033 m from its center.
The Schwarzschild radius RBH for an object of mass M is defined as
(See image.)
where c is the speed of light and G is the universal gravitational constant. RBH gives the radius of the event horizon of a black hole with mass M. In other words, it gives the radius to which some amount of mass M would need to be compressed in order to form a black hole.
1. The mass of the Sun is about 1.99 × 1030 kg. What would be the radius of a black hole with this mass?
2. The mass of Mars is about 6.42 × 1023 kg. What would be the radius of a black hole with this mass?
3. Suppose you want to make a black hole that is roughly the size of an atom (take RBH = 1.10 x 10-10 m). What would be the mass M of such a black hole?
Chapter 5 Solutions
COLLEGE PHYSICS,VOL.1
Ch. 5.1 - Velocity and Acceleration in Circular Motion...Ch. 5.1 - Prob. 5.2CCCh. 5.2 - Prob. 5.3CCCh. 5.3 - Prob. 5.5CCCh. 5.4 - Prob. 5.6CCCh. 5.4 - Prob. 5.7CCCh. 5 - Prob. 1QCh. 5 - Prob. 2QCh. 5 - Prob. 3QCh. 5 - Consider the Cavendish experiment in Figure 5.22....
Ch. 5 - Prob. 5QCh. 5 - Prob. 6QCh. 5 - Prob. 7QCh. 5 - What force makes it possible for a car to move...Ch. 5 - Prob. 9QCh. 5 - Prob. 10QCh. 5 - Prob. 11QCh. 5 - Prob. 12QCh. 5 - Prob. 13QCh. 5 - Prob. 14QCh. 5 - Prob. 15QCh. 5 - Prob. 16QCh. 5 - Prob. 17QCh. 5 - Prob. 18QCh. 5 - Plutos mass. In 1978, it was discovered that Pluto...Ch. 5 - Prob. 1PCh. 5 - Prob. 2PCh. 5 - Prob. 3PCh. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - Prob. 6PCh. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - Prob. 9PCh. 5 - Prob. 10PCh. 5 - A compact disc spins at 2.5 revolutions per...Ch. 5 - Prob. 12PCh. 5 - Prob. 13PCh. 5 - Prob. 14PCh. 5 - Prob. 15PCh. 5 - Consider the motion of a rock tied to a string of...Ch. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - Prob. 20PCh. 5 - Prob. 21PCh. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Prob. 25PCh. 5 - Prob. 26PCh. 5 - Prob. 27PCh. 5 - Prob. 29PCh. 5 - Consider a Ferris wheel in which the chairs hang...Ch. 5 - Prob. 31PCh. 5 - Prob. 32PCh. 5 - Prob. 33PCh. 5 - Prob. 34PCh. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - Prob. 40PCh. 5 - Prob. 41PCh. 5 - Prob. 42PCh. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - Prob. 45PCh. 5 - Prob. 46PCh. 5 - Prob. 47PCh. 5 - Prob. 48PCh. 5 - Prob. 50PCh. 5 - Prob. 51PCh. 5 - Prob. 52PCh. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - Prob. 55PCh. 5 - Prob. 56PCh. 5 - Prob. 57PCh. 5 - Prob. 58PCh. 5 - Prob. 59PCh. 5 - Prob. 60PCh. 5 - Prob. 61PCh. 5 - Prob. 62PCh. 5 - Prob. 63PCh. 5 - Prob. 64PCh. 5 - Prob. 65PCh. 5 - Prob. 66PCh. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - Prob. 70PCh. 5 - Prob. 71PCh. 5 - Prob. 72PCh. 5 - A rock of mass m is tied to a string of length L...Ch. 5 - Prob. 74PCh. 5 - Prob. 75PCh. 5 - Prob. 76PCh. 5 - Prob. 77P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Since 1995, hundreds of extrasolar planets have been discovered. There is the exciting possibility that there is life on one or more of these planets. To support life similar to that on the Earth, the planet must have liquid water. For an Earth-like planet orbiting a star like the Sun, this requirement means that the planet must be within a habitable zone of 0.9 AU to 1.4 AU from the star. The semimajor axis of an extrasolar planet is inferred from its period. What range in periods corresponds to the habitable zone for an Earth-like Planet orbiting a Sun-like star?arrow_forwardCompute directly the gravitational force on a unit mass at a point exterior to a homogeneous sphere of matter.arrow_forward(a) What is the approximate force of gravity on a 70-kg person due to the Andromeda Galaxy, assuming its total mass is 1013 that of our Sun and acts like a single mass 0.613 Mpc away? (b) What is the ratio of this force to the person’s weight? Note that Andromeda is the closest large galaxy.arrow_forward
- Which of the following statements are fundamental postulates of the special theory of relativity? More than one statement may be correct. (a) Light moves through a substance called the ether. (b) The speed of light depends on the inertial reference frame in which it is measured. (c) The laws of physics depend on the inertial reference frame in which they are used. (d) The laws of physics are the same in all inertial reference frames. (e) The speed of light is independent of the inertial reference frame in which it is measured.arrow_forwardWhat is the Schwarzschild radius for the black hole at the center of our galaxy if it has the mass of 4 million solar masses?arrow_forwardFind the approximate mass of the dark and luminous matter in the Milky Way galaxy. Assume the luminous matter is due to approximately 1011 stars of average mass 1.5 times that of our Sun. and take the dark matter to be 10 times as massive as the luminous matter.arrow_forward
- As an object falls into a black hole, tidal forces increase. Will these tidal forces always tear the object apart as it approaches the Schwarzschild radius? How does the mass of the black hole and size of the object affect your answer?arrow_forwardA black hole is an object with mass, but no spatial extent. It truly is a particle. A black hole may form from a dead star. Such a black hole has a mass several times the mass of the Sun. Imagine a black hole whose mass is ten times the mass of the Sun. a. Would you expect the period of an object orbiting the black hole with a semimajor axis of 1 AU to have a period greater than, less than, or equal to 1 yr? Explain your reasoning. b. Use Equation 7.6 to calculate this period.arrow_forwardShow that the velocity of a star orbiting its galaxy in a circular oibit is inversely proportional to the square root of its orbital radius, assuming the mass of the stars inside its orbit acts like a single mass at the center of the galaxy. You may use an equation from a previous chapter to support your conclusion, but you must justify its use and define all terms used.arrow_forward
- Which of the following statements are fundamental postulates of the special theory of relativity? More than one statement may be correct. (a) Light moves through a substance called the ether. (b) The speed of light depends on the inertial reference frame in which it is measured. (c) The laws of physics depend on the inertial reference frame in which they are used. (d) The laws of physics are the same in all inertial reference frames. (e) The speed of light is independent of the inertial reference frame in which it is measured.arrow_forwardA star is observed to undergo circular orbit around the black hole located at the centre of the Milky Way galaxy. The orbital period is measured to be 16 years and the distance between the star and the black hole is determined to be 1000 Astronomical Units. Estimate the mass of the black hole in units of the Solar mass, and explain any approximations you make in your calculation.arrow_forwardThe kinetic energy of the ejecta from a supernova explosion is about 10^44 joules. Use the formula for kinetic energy to determine the typical speed at which matter is ejected from a supernova with a mass of 10 Msun. Compare that speed with the Sunʹs orbital speed around our galaxy. Based on your comparison, do you think the galaxyʹs gravity would be strong enough to retain the supernova debris if there were no interstellar medium to slow it down? Explain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY