Astronauts in orbit are apparently weightless. This means that a clever method of measuring the mass of astronauts is needed to monitor their mass gains or losses, and adjust their diet. One way to do this is to exert a known force on an astronaut and measure the acceleration produced. Suppose a net external force of 50.0 N is exerted, and an astronaut’s acceleration is measured to be 0.89 3 m/s 2 . (a) Calculate her mass. (b) By exerting a force on the astronaut, the vehicle in which she orbits experiences an equal and opposite force. Use this knowledge to find an equation for the acceleration of the system (astronaut and spaceship) that would be measured by a nearby observer. (c) Discuss how this would affect the measurement of the astronaut’s acceleration. Propose a method by which recoil of the vehicle is avoided.
Astronauts in orbit are apparently weightless. This means that a clever method of measuring the mass of astronauts is needed to monitor their mass gains or losses, and adjust their diet. One way to do this is to exert a known force on an astronaut and measure the acceleration produced. Suppose a net external force of 50.0 N is exerted, and an astronaut’s acceleration is measured to be 0.89 3 m/s 2 . (a) Calculate her mass. (b) By exerting a force on the astronaut, the vehicle in which she orbits experiences an equal and opposite force. Use this knowledge to find an equation for the acceleration of the system (astronaut and spaceship) that would be measured by a nearby observer. (c) Discuss how this would affect the measurement of the astronaut’s acceleration. Propose a method by which recoil of the vehicle is avoided.
Astronauts in orbit are apparently weightless. This means that a clever method of measuring the mass of astronauts is needed to monitor their mass gains or losses, and adjust their diet. One way to do this is to exert a known force on an astronaut and measure the acceleration produced. Suppose a net external force of 50.0 N is exerted, and an astronaut’s acceleration is measured to be
0.89
3 m/s
2
. (a) Calculate her mass. (b) By exerting a force on the astronaut, the vehicle in which she orbits experiences an equal and opposite force. Use this knowledge to find an equation for the acceleration of the system (astronaut and spaceship) that would be measured by a nearby observer. (c) Discuss how this would affect the measurement of the astronaut’s acceleration. Propose a method by which recoil of the vehicle is avoided.
12. Two forces act on a 3.1-kg mass that undergoes acceleration
=
0.91 0.27 m/s². If one force is -1.2î – 2.5ĵ N, what's
the other?
36. Example 5.7: You whirl a bucket of water around in a vertical
circle of radius 1.22 m. What minimum speed at the top of the
circle will keep the water in the bucket?
Passage Problems
Laptop computers are equipped with accelerometers that sense when
the device is dropped and then put the hard drive into a protective mode.
Your computer geek friend has written a program that reads the accel-
erometer and calculates the laptop's apparent weight. You're amusing
yourself with this program on a long plane flight. Your laptop weighs
just 5 pounds, and for a long time that's what the program reports. But
then the "Fasten Seatbelt" light comes on as the plane encounters turbu-
lence. Figure 4.27 shows the readings for the laptop's apparent weight
over a 12-second interval that includes the start of the turbulence.
76. At the first sign of turbulence,
the plane's acceleration
a. is upward.
b. is downward.
c. is impossible to tell from
the graph.
77. The plane's vertical ac-
celeration has its greatest
magnitude
a. during interval B.
b. during interval C.
c. during interval D.
78. During interval C, you can
conclude for certain that the
plane is
Apparent…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.