Concept explainers
If the rocket sled shown in the previous problem starts with only one rocket burning, what is the magnitude of this acceleration? Assume that the mass of the system is
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
University Physics Volume 1
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
An Introduction to Thermal Physics
Essential University Physics: Volume 2 (3rd Edition)
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Conceptual Physical Science (6th Edition)
Physics for Scientists and Engineers with Modern Physics
- In a tug-of-war game on one campus, 15 students pull on a rope at both ends in an effort to displace the central knot to one side or the other. Two students pull with force 196 N each to the light, four students pull with force 98 N each to the left, five students pull with force 62 N each to the left, three students pull with force 150 N each to the right, and one student pulls with force 250 N to the left. Assuming the positive direction to the tight, express the net pull on the knot in terms of the unit vector. How big is the net pull on the knot? In what direction?arrow_forwardA 1250 kg boat is traveling at 90 km/h when its engine is shut off. The magnitude of the frictional force fk between boat and water is proportional to the speed v of the boat. Thus, fk = 80v, where v is in meters per second and fk (the magnitude of the frictional force) is in newtons. Find the time required for the boat to slow down to 45 km/h.arrow_forwardTwo blocks are connected by a string as shown. The inclination of the ramp is θ = 39° while the masses of the blocks are m1 = 7.8 kg and m2 = 19.6 kg. Friction is negligible. Write an equation for the magnitude of the acceleration the two blocks experience. Give your equation in terms of m1, m2, θ, and the acceleration due to gravity g. Consider down the ramp to be the negative direction in this calculation. What is the magnitude of the acceleration of each block in ms2ms2? Write an equation for the tension in the string in terms of m2, the acceleration due to gravity g, and the acceleration of the two blocks a. What is the tension in the rope in newtons?arrow_forward
- A flea jumps by exerting a force of 1.02 x 10-5 N straight down on the ground. A breeze blowing on the flea parallel to the ground exerts a force of 1.16 × 10-6 N on the flea. Find the direction and magnitude (in m/s²) of the acceleration of the flea if its mass is 6.0 × 107 kg. (Let us assume that F points to the right. We will consider this to be the +x direction and vertical to be the +y wind direction.) magnitude 17.1 Did you draw a free-body diagram, and identify the forces acting on the flea? Consider the forces acting on the flea during the time it is in contact with the ground. m/s² direction 6.49 Review vector components. In which of the four quadrants is the resultant force located?° (measured clockwise from the vertical) Tutorial Supporting Materials Physical Constants Submit Answerarrow_forwardA flea jumps by exerting a force of 1.17 x 10-5 N straight down on the ground. A breeze blowing on the flea parallel to the ground exerts a force of 1.12 x 10-6 N on the flea. Find the direction and magnitude (in m/s²) of the acceleration of the flea if its mass is 6.0 × 10-7 kg. (Let us assume that wind points to the right. We will consider this to be the +x direction and vertical to be the +y direction.) magnitude direction m/s² ° (measured clockwise from the vertical)arrow_forwardAn object has a mass of 7.92 kg and it has an initial velocity vo.It is acted upon by a force of 77.3 N (North). for a period of 15.2 s? This results in the object having a final velocity of Vƒ = 14.7 m/s (North). What was the initial velocity vo?arrow_forward
- A rope is attached to Box A, and it is pulled on a rough surface due east with friction. The mass of Box A is 50 kg, and the tension force applied to the box is 100 N due east. If Box A is pulled by the tension force for 4.0 s, and the velocity changes from 0.1 m/s due east to 0.65 m/s due east during the time Box A is pulled, answer the following questions. (a) What is the acceleration of Box A during the time it is pulled? (b) What is the change in kinetic energy of Box A during the time it is pulled? (c) What is the net work done on Box A by the tension force and the frictional force together? (d) What is the work done on Box A by the tension force alone? (e) What is the work done on Box A by the frictional force alone?arrow_forwardA flea jumps by exerting a force of 1.32 x 105 N straight down on the ground. A breeze blowing on the flea parallel to the ground exerts a force of 1.16 x 10-6 N on the flea. Find the direction and magnitude (in m/s²) of the acceleration of the flea if its mass is 6.0 x 107 kg. (Let us assume that Fwind points to the right. We will consider this to be the +x direction and vertical to be the +y direction.) magnitude 11.5 x Did you draw a free-body diagram, and identify the forces acting on the flea? Consider the forces acting on the flea during the time it is in contact with the ground. m/s2 85.3 x Review vector components. In which of the four quadrants is the resultant force located?° (measured clockwise from the vertical) direction Tutorial Supporting Materialsarrow_forwardAkash and Beth are on skateboards. Beth and her skateboard have a combined mass of 62 kg. Akash and his skateboard have a combined mass of 150 kg. Beth pushes Akash to the left with a force of 120N. Assume no friction. What are the accelerations of Beth (+ skateboard) and Akash (+ skateboard)?arrow_forward
- A block of mass m is on top of a block of mass M = 3m. The two blocks are connected by a string that passes over an ideal pulley. The bottom block is also tied to a string - exerting a force F, after the blocks have been set in motion, causes the blocks to move at constant velocity. m F Use g = 10 N/kg for this problem. The coefficient of kinetic friction between all surfaces in contact is 0.300. 中一華一中 F (a) For this scenario, which free-body diagrams (see above) are correct? Select the two correct diagrams, one for each block, and make sure you can identify which force is which. O The correct free-body diagram of the larger block is number 1. O The correct free-body diagram of the larger block is number 2. O The correct free-body diagram of the larger block is number 3. O The correct free-body diagram of the smaller block is number 4. O The correct free-body diagram of the smaller block is number 5. O The correct free-body diagram of the smaller block is number 6. (b) If the value of…arrow_forwardAn ideal massless rope passes over a massless, frictionless pulley. Block A with mass mA=9.8 kg, and block B with mass mB=4.3 kg, are suspended from opposite ends of the rope. Consider the motion of the blocks after they are released from rest. Let a be the magnitude of their acceleration, and let FT be the tension in the rope. Let upward be the positive y direction for block B, and let downward be the positive y direction for block A. 1. Write an expression for the net force on block A consistent with the positive direction as given in the problem statement. 2. Write an expression for the net force on block B consistent with the positive direction as given in the problem statement. 3. Enter an expression for the acceleration of either block. 4. What is the numerical value, in newtons, of the tension in the rope?arrow_forwardA particle of mass 1.2 kg is acted on by forces F, = 18î N, F, = -11î N, and F, = 9.0j N. What is its acceleration (in m/s?) in this case? (Express your answer in vector form.) m/s?arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning