Explain how σ and

Interpretation:
The similarity and difference between s and p bonds is to be explained.
Concept Introduction:
- There are two types of bonds that are formed between the atoms-
- Electron in atoms occupy atomic orbitals while in molecule, electrons occupy molecular orbitals. These molecular orbitals are formed by the combination of the atomic orbitals and they can be bonding molecular orbitals and ant-bonding molecular orbitals.
- The process of mixing of atomic orbitals of similar energy to produce new molecular orbitals of equivalent energy is known as hybridization.
a) Covalent bond- the bond formed by the sharing of electrons between the atoms.
b) Ionic bond- When atoms gain/loss electrons and become ions, the electrostatic attraction between the oppositely charged ions is known as ionic bond.
Answer to Problem 1E
Similarity-They both are chemical covalent bonds and are formed by the overlapping of the atomic orbitals.
Differences-
s- bond | ?-bond |
Formed by the axial overlap of the atomic orbitals. | Formed by the side-ways overlap of the atomic orbitals. |
It can be formed by the overlap of s-s, s-p or p-p orbitals. | It can only be formed by the overlap of p orbitals |
Oriented along the internuclear axis. | Oriented perpendicular to the internuclear axis. |
Exists independently. | Exist along with sigma bond. |
Stronger than pi-bond. | Weaker than sigma bond. |
More reactive. | Less reactive. |
Determines the shape of the molecule. | Does not determine the shape of the molecule. |
Explanation of Solution
- Sigma (s) bonds- It is a type of covalent bond which is formed by the end to end overlapping of the atomic orbitals of the atoms involved in bonding.
- Pi (p)bonds -It is a type of covalent bond which is formed by the side wise overlapping of the atomic orbitals of the atoms involved in bonding.
Therefore, differences between sigma and pi bonds are-
s- bond | ?-bond |
Formed by the axial overlap of the atomic orbitals. | Formed by the side-ways overlap of the atomic orbitals. |
It can be formed by the overlap of s-s, s-p or p-p orbitals. | It can only be formed by the overlap of p orbitals |
Oriented along the internuclear axis. | Oriented perpendicular to the internuclear axis. |
Exists independently. | Exist along with sigma bond. |
Stronger than pi-bond. | Weaker than sigma bond. |
More reactive. | Less reactive. |
Determines the shape of the molecule. | Does not determine the shape of the molecule. |
However, the only similarity between these two are that they both are chemical covalent bonds and are formed by the overlapping the atomic orbitals, and the main difference is that sigma bond is formed by the axial overlap of the atomic orbitals, whereas, pi bond is formed by the sideways overlapping of atomic orbitals.
Want to see more full solutions like this?
Chapter 5 Solutions
Chemistry Atoms First2e
- Experiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward(15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forward
- Q7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forward
- Q5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forwardQ4: Circle the substrate that gives a single alkene product in a E2 elimination. CI CI Br Brarrow_forwardPlease calculate the chemical shift of each protonsarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning





