Explain how σ and
Interpretation:
The similarity and difference between s and p bonds is to be explained.
Concept Introduction:
- There are two types of bonds that are formed between the atoms-
- Electron in atoms occupy atomic orbitals while in molecule, electrons occupy molecular orbitals. These molecular orbitals are formed by the combination of the atomic orbitals and they can be bonding molecular orbitals and ant-bonding molecular orbitals.
- The process of mixing of atomic orbitals of similar energy to produce new molecular orbitals of equivalent energy is known as hybridization.
a) Covalent bond- the bond formed by the sharing of electrons between the atoms.
b) Ionic bond- When atoms gain/loss electrons and become ions, the electrostatic attraction between the oppositely charged ions is known as ionic bond.
Answer to Problem 1E
Similarity-They both are chemical covalent bonds and are formed by the overlapping of the atomic orbitals.
Differences-
s- bond | ?-bond |
Formed by the axial overlap of the atomic orbitals. | Formed by the side-ways overlap of the atomic orbitals. |
It can be formed by the overlap of s-s, s-p or p-p orbitals. | It can only be formed by the overlap of p orbitals |
Oriented along the internuclear axis. | Oriented perpendicular to the internuclear axis. |
Exists independently. | Exist along with sigma bond. |
Stronger than pi-bond. | Weaker than sigma bond. |
More reactive. | Less reactive. |
Determines the shape of the molecule. | Does not determine the shape of the molecule. |
Explanation of Solution
- Sigma (s) bonds- It is a type of covalent bond which is formed by the end to end overlapping of the atomic orbitals of the atoms involved in bonding.
- Pi (p)bonds -It is a type of covalent bond which is formed by the side wise overlapping of the atomic orbitals of the atoms involved in bonding.
Therefore, differences between sigma and pi bonds are-
s- bond | ?-bond |
Formed by the axial overlap of the atomic orbitals. | Formed by the side-ways overlap of the atomic orbitals. |
It can be formed by the overlap of s-s, s-p or p-p orbitals. | It can only be formed by the overlap of p orbitals |
Oriented along the internuclear axis. | Oriented perpendicular to the internuclear axis. |
Exists independently. | Exist along with sigma bond. |
Stronger than pi-bond. | Weaker than sigma bond. |
More reactive. | Less reactive. |
Determines the shape of the molecule. | Does not determine the shape of the molecule. |
However, the only similarity between these two are that they both are chemical covalent bonds and are formed by the overlapping the atomic orbitals, and the main difference is that sigma bond is formed by the axial overlap of the atomic orbitals, whereas, pi bond is formed by the sideways overlapping of atomic orbitals.
Want to see more full solutions like this?
Chapter 5 Solutions
Chemistry Atoms First2e
- When 15.00 mL of 3.00 M NaOH was mixed in a calorimeter with 12.80 mL of 3.00 M HCl, both initially at room temperature (22.00 C), the temperature increased to 29.30 C. The resultant salt solution had a mass of 27.80 g and a specific heat capacity of 3.74 J/Kg. What is heat capacity of the calorimeter (in J/C)? Note: The molar enthalpy of neutralization per mole of HCl is -55.84 kJ/mol.arrow_forwardQ6: Using acetic acid as the acid, write the balanced chemical equation for the protonation of the two bases shown (on the -NH2). Include curved arrows to show the mechanism. O₂N- O₂N. -NH2 -NH2 a) Which of the two Bronsted bases above is the stronger base? Why? b) Identify the conjugate acids and conjugate bases for the reactants. c) Identify the Lewis acids and bases in the reactions.arrow_forwardQ5: For the two reactions below: a) Use curved electron-pushing arrows to show the mechanism for the reaction in the forward direction. Redraw the compounds to explicitly illustrate all bonds that are broken and all bonds that are formed. b) Label Bronsted acids and bases in the left side of the reactions. c) For reaction A, which anionic species is the weakest base? Which neutral compound is the stronger acid? Is the forward or reverse reaction favored? d) Label Lewis acids and bases, nucleophiles and electrophiles in the left side of the reactions. A. 용 CH3OH я хон CH3O OH B. HBr CH3ONa NaBr CH3OHarrow_forward
- potential energy Br b) Translate the Newman projection below to its wedge-and-dash drawing. F H. OH CH3 CI c) Isopentane (2-methylbutane) is a compound containing a branched carbon chain. Draw a Newman projection of six conformations about the C2-C3 bond of isopentane. On the curve of potential energy versus angle of internal rotation for isopentane, label each energy maximum and minimum with one of the conformations. 0° 。 F A B D C angle of internal rotation E F 360° (=0°) JDownlarrow_forwardQ7: Identify the functional groups in these molecules a) CH 3 b) Aspirin: HO 'N' Capsaicin HO O CH3 CH 3arrow_forwardQ2: Name the following alkanesarrow_forward
- 1. Complete the following table in your laboratory notebook. Substance Formula Methanol CH3OH Ethanol C2H5OH 1-Propanol C3H7OH 1-Butanol C4H9OH Pentane C5H12 Hexane C6H14 Water H₂O Acetone C3H60 Structural Formula Molecular Weight (g/mol) Hydrogen Bond (Yes or No)arrow_forwardQ1: Compare the relative acidity in each pair of compounds. Briefly explain. (a) CH3OH vs NH 3 (b) HF vs CH3COOH (c) NH3 vs CH4 (d) HCI vs HI (e) CH3COOH vs CH3SH (f) H₂C=CH2 vs CH3 CH3 (g) compare the acidity of the two bolded hydrogens O. H N- (h) compare the acidity of the two bolded hydrogens, draw resonance structures to explain H H Harrow_forwardQ3: Rank the following molecules in order of decreasing boiling point: (a) 3-methylheptane; (b) octane; (c) 2,4-dimethylhexane; (d) 2,2,4-trimethylpentane.arrow_forward
- Q5: Conformations of Alkanes a) Draw a Newman Projection of the compound below about the C2-C3 bond. H3C Cli... H IIIH Br CH3arrow_forwardThe ability of atoms to associate with each other depends ona) the electronic structure and its spatial orientation.b) the electron affinity.c) The other two answers are correct.arrow_forwardWhat is the final volume after you reach the final temperature? I put 1.73 but the answer is wrong not sure why The initial volume of gas is 1.60 LL , the initial temperature of the gas is 23.0 °C°C , and the system is in equilibrium with an external pressure of 1.2 bar (given by the sum of a 1 bar atmospheric pressure and a 0.2 bar pressure due to a brick that rests on top of the piston). Then, as you did in Exercise 1, you heat the gas slowly until the temperature reaches 48.2 °Carrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning