Chemical Principles
8th Edition
ISBN: 9781305581982
Author: Steven S. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 154CP
Interpretation Introduction
Interpretation:Ratio of temperatures for two samples of
Concept introduction:Anything that has mass and accommodates some space is called matter. Three common
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4) A 8.15 g sample containing hydrogen peroxide (H2O2) decomposes to form water and oxygen. Thetemperature and pressures conditions in the lab were 21.2oC and 761.4 torr, respectively. The oxygengas is collected over a sample of water at 21.2oC; the vapor pressure of water at that temperature is18.9 torr. When the water level inside and outside of the tube is equal the volume of of gas is recordedas 176.23 mL.a) Write and balance the equation for the decomposition reaction
b) What is the partial pressure of the oxygen gas?
c) Assuming no deviation from ideality, how many moles of oxygen gas were produced?
d) What was the mass of hydrogen peroxide that reacted?
e) What is the percent by mass of the hydrogen peroxide from the original sample?
8. For the reaction 2H₂O(1) + 2e¯ → H₂(g) + 2OH(aq), calculate the volume of "dry"
hydrogen gas created at a pressure of 745 mm Hg and 25.0 °C when 0.6696 g H₂O are
used. The vapor pressure of water at this temperature is 23.8 mmHg.
A) 0.479 L
B) 0.464 L
C) 0.450 L
D) 4.18 L
E) 4.05 L
12. A sample of solid potassium chlorate was heated in a test tube and decomposed into potassium chloride and oxygen gas. The oxygen produced was collected by displacement of water at 22ºC at a total pressure of 754 torr. The volume of the gas collected was 0.650 L, and the vapor pressure of water at 22ºC is 21 torr. Calculate the partial pressure of O2 in the gas collected and the mass of potassium chlorate in the sample that was decomposed. (2.13 g)
Chapter 5 Solutions
Chemical Principles
Ch. 5 - Consider the following apparatus: a test tube...Ch. 5 - Prob. 2DQCh. 5 - Prob. 3DQCh. 5 - Prob. 4DQCh. 5 - Prob. 5DQCh. 5 - Prob. 6DQCh. 5 - Prob. 7DQCh. 5 - Prob. 8DQCh. 5 - Prob. 9DQCh. 5 - Prob. 10DQ
Ch. 5 - Prob. 11DQCh. 5 - Prob. 12DQCh. 5 - Prob. 13DQCh. 5 - Prob. 14DQCh. 5 - Prob. 15DQCh. 5 - Prob. 16DQCh. 5 - Prob. 17DQCh. 5 - For each of the quantities (af) listed below,...Ch. 5 - Prob. 19DQCh. 5 - Prob. 20DQCh. 5 - A sealed-tube manometer as shown below can be...Ch. 5 - A diagram for an open-tube manometer is shown...Ch. 5 - Prob. 23ECh. 5 - Prob. 24ECh. 5 - A gauge on a compressed gas cylinder reads 2200...Ch. 5 - Prob. 26ECh. 5 - Prob. 27ECh. 5 - Prob. 28ECh. 5 - Prob. 29ECh. 5 - Prob. 30ECh. 5 - A mixture of 1.00 g H2 and 1.00 g He is placed in...Ch. 5 - Prob. 32ECh. 5 - Prob. 33ECh. 5 - Prob. 34ECh. 5 - A piece of solid carbon dioxide, with a mass of...Ch. 5 - Prob. 36ECh. 5 - Suppose two 200.0-L tanks are to be filled...Ch. 5 - Prob. 38ECh. 5 - Prob. 39ECh. 5 - Prob. 40ECh. 5 - Prob. 41ECh. 5 - Prob. 42ECh. 5 - Prob. 43ECh. 5 - Prob. 44ECh. 5 - Prob. 45ECh. 5 - A sample of nitrogen gas was collected over water...Ch. 5 - Prob. 47ECh. 5 - Prob. 48ECh. 5 - Prob. 49ECh. 5 - A 1.00-L gas sample at 100.°C and 600. torr...Ch. 5 - Prob. 51ECh. 5 - Given that a sample of air is made up of nitrogen,...Ch. 5 - Prob. 53ECh. 5 - Prob. 54ECh. 5 - A compound contains only nitrogen and hydrogen and...Ch. 5 - A compound has the empirical formula CHCl. A...Ch. 5 - One of the chemical controversies of the...Ch. 5 - Discrepancies in the experimental values of the...Ch. 5 - A sample of methane (CH4) gas contains a small...Ch. 5 - Prob. 60ECh. 5 - Prob. 61ECh. 5 - Urea (H2NCONH2) is used extensively as a...Ch. 5 - Methanol (CH3OH) can be produced by the...Ch. 5 - Consider the reaction between 50.0 mL of liquid...Ch. 5 - Some very effective rocket fuels are composed of...Ch. 5 - Air bags are activated when a severe impact causes...Ch. 5 - Prob. 67ECh. 5 - Prob. 68ECh. 5 - Prob. 69ECh. 5 - Xenon and fluorine will react to form binary...Ch. 5 - The nitrogen content of organic compounds can be...Ch. 5 - Prob. 72ECh. 5 - Prob. 73ECh. 5 - Consider the following balanced equation in which...Ch. 5 - Prob. 75ECh. 5 - Prob. 76ECh. 5 - Prob. 77ECh. 5 - Prob. 78ECh. 5 - Prob. 79ECh. 5 - Prob. 80ECh. 5 - Calculate the average kinetic energies of the...Ch. 5 - Prob. 82ECh. 5 - Prob. 83ECh. 5 - Prob. 84ECh. 5 - Prob. 85ECh. 5 - Prob. 86ECh. 5 - Prob. 87ECh. 5 - One way of separating oxygen isotopes is by...Ch. 5 - A compound contains only C, H, and N. It is 58.51%...Ch. 5 - Prob. 90ECh. 5 - Prob. 91ECh. 5 - Prob. 92ECh. 5 - Why do real gases not always behave ideally?...Ch. 5 - Prob. 94ECh. 5 - Prob. 95ECh. 5 - Without looking at tables of values, which of the...Ch. 5 - Prob. 97ECh. 5 - Prob. 98ECh. 5 - Prob. 99ECh. 5 - Prob. 100ECh. 5 - Prob. 101ECh. 5 - Prob. 102ECh. 5 - Consider separate 1.0-L samples of O2(g) and...Ch. 5 - Consider separate 1.00-L samples of Ar(g), both...Ch. 5 - Calculate the intermolecular collision frequency...Ch. 5 - Prob. 106ECh. 5 - Prob. 107ECh. 5 - Prob. 108ECh. 5 - Prob. 109ECh. 5 - Prob. 110ECh. 5 - Prob. 111ECh. 5 - Prob. 112AECh. 5 - Prob. 113AECh. 5 - Prob. 114AECh. 5 - Prob. 115AECh. 5 - Prob. 116AECh. 5 - Prob. 117AECh. 5 - Prob. 118AECh. 5 - A 2.747-g sample of manganese metal is reacted...Ch. 5 - Prob. 120AECh. 5 - At STP, 1.0 L Br2 reacts completely with 3.0 L F2...Ch. 5 - Prob. 122AECh. 5 - Prob. 123AECh. 5 - Prob. 124AECh. 5 - Prob. 125AECh. 5 - Prob. 126AECh. 5 - Prob. 127AECh. 5 - Prob. 128AECh. 5 - Prob. 129AECh. 5 - Prob. 130AECh. 5 - Prob. 131AECh. 5 - Prob. 132AECh. 5 - Prob. 133AECh. 5 - Prob. 134AECh. 5 - Prob. 135AECh. 5 - Prob. 136AECh. 5 - Prob. 137AECh. 5 - Prob. 138AECh. 5 - Prob. 139AECh. 5 - Prob. 140AECh. 5 - Prob. 141AECh. 5 - Prob. 142AECh. 5 - Prob. 143AECh. 5 - Prob. 144AECh. 5 - Prob. 145AECh. 5 - Prob. 146CPCh. 5 - A 16.0-g sample of methane (CH4) reacts with 64.0...Ch. 5 - You have two samples of helium gas at the same...Ch. 5 - Prob. 149CPCh. 5 - Prob. 150CPCh. 5 - Prob. 151CPCh. 5 - Prob. 152CPCh. 5 - The density of a pure gaseous compound was...Ch. 5 - Prob. 154CPCh. 5 - The most probable velocity ump is the velocity...Ch. 5 - Derive Dalton’s law of partial pressures from the...Ch. 5 - One of the assumptions of the kinetic molecular...Ch. 5 - Prob. 158CPCh. 5 - A steel cylinder contains 5.00 moles of graphite...Ch. 5 - Prob. 160CPCh. 5 - Prob. 161CPCh. 5 - Prob. 162CPCh. 5 - Calculate the number of stages needed to change...Ch. 5 - Prob. 164CPCh. 5 - You have a helium balloon at 1.00 atm and 25°C....Ch. 5 - Prob. 166CPCh. 5 - Prob. 167MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- How does hydraulic fracturing differ from previously used techniques for the recovery of natural gas from the earth?arrow_forwardYou have two pressure-proof steel cylinders of equal volume, one containing 1.0 kg of CO and the other containing 1.0 kg of acetylene, C2H2. (a) In which cylinder is the pressure greater at 25 C? (b) Which cylinder contains the greater number of molecules?arrow_forwardA small piece of Zinc reacts with dilute HCl to form H2 which is collected over water at 16°C into a large flask. The total pressure is adjusted to barometric pressure (752 torr), and the volume is 1495 mL. (Hint: at 16°C the vapor pressure of water is 13.6 torr). Calculate the partial pressure and the mass of H2arrow_forward
- A 35.0 L sample of gas collected in the upper atmosphere at a pressure of 48.6 torr is compressed into a 150.0 ml. container at the same temperature. (a) What is the new pressure, in atmospheres? (b) To what volume would the original sample have had to be compressed to exert a pressure of 10.0 atm?arrow_forwardA 5.50-mole sample of NH3 gas is kept in a 1.85-L container at 309 K. If the van der Waals equation is assumed to give the correct answer for the pressure of the gas, calculate the percent error made in using the ideal-gas equation to calculate the pressure. (Use a = 4.17 atm·L2·mol−2 and b = 0.0371 L·mol−1 for the van der Waals equation.)arrow_forwardThe mixing ratio of Ar in the atmosphere is 0.934%. What is the concentration of Ar in terms of moles/L? Assume the temperature is 25 °C and its total pressure is 0.92 atm.arrow_forward
- Chemistry An empty flask weighs 129.361 g. After vaporization of a sample of volatile liquid at a temperature of 99.7 °C, the flask was sealed, cooled to room temperature, and found to have a mass of 129.657 g. The atmospheric pressure was 759.1 mm Hg. The flask was rinsed and completely filled with water at 23.4 °C. The mass of the water-filled flask was determined to be 377.398 g. What is the temperature of the gas that fills the flask in Kelvin? (Enter your answer as a number without units.) An empty flask weighs 128.950 g. After vaporization of a sample of volatile liquid at a temperature of 99.4 °C. the flask was sealed, cooled to room temperature, and found to have a mass of 129.368 g. The atmospheric pressure was 759.5 mm Hg. The flask was rinsed and cormpletely filled with water at 21.3 °C. The mass of the water-filled flask was determined to be 377.557 g. What is the molar mass (in g/mol) of the volatile liquid? (Enter your answer as a number without units.)arrow_forward9arrow_forwardA 0.240 g sample of H20(1) is sealed into an evacu- ated 3.20 L flask. What is the pressure of the vapor inthe flask if the temperature is (a) 30.0 °C;arrow_forward
- A sample of oxygen gas was collected by displacement of water in gas collection apparatus. The total pressure in the collection vessel was 732.7 torr, the temperature was 26.0 C, and the vessel contained 522 ml of the collected gas. At 26 C, the vapor pressure of water is 22.6 torr. What is the partial pessure (in torr) of oxygen gas?arrow_forwardAn empty flask weighs 130.084 g. After vaporization of a sample of volatile liquid at a temperature of 100.0 °C, the flask was sealed, cooled to room temperature, and found to have a mass of 130.316 g. The atmospheric pressure was 759.7 mm Hg. The flask was rinsed and completely filled with water at 18.0 °C. The mass of the water-filled flask was determined to be 379.551 g. What is the pressure of the gas that fills the flask in atmospheres? (Enter your answer as a number without units.)arrow_forwardA 2.16 g sample of phosphorus was burned in a large excess of chlorine, and the phosphorus chloride product was found to have a mass of 9.62 g. The vapor of this phosphorus chloride effused at a rate that was 1.77 times slower than that of the same amount of CO2 at the same temperature and pressure. Determine the molar mass and the molecular formula of this phosphorus chloride.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning