Statics and Mechanics of Materials (5th Edition)
5th Edition
ISBN: 9780134382593
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4.8, Problem 43P
The tractor exerts a towing force T = 400 lb. Determine the normal reactions at each of the two front and two rear tires and the tractive frictional force F on each rear tire needed to pull the load forward at constant velocity. The tractor has a weight of 7500 lb and a center of gravity, located at GT. An additional weight of 600 lb is added to its front having a center of gravity at GA. Take μs = 0.4. The front wheels are free to roll.
Prob. 4-43
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Pro 12 The tractor exerts a towing force of
T=500 lb. There are two front and two rear
tires which provide normal reactions, and the
tractive friction F exists only on the two rear
tires. Also, discuss whether it will move or
not. The tractor has a weight of 7000 lb and a
center of graviry at Gr. An additional weight
of 600 lb is added to its front for stability,
which is indicated by GA. Take us = 0.4. The
front wheels are free to roll.
TA
2.5 ft.
다
A
3 m
Determine the horizontal force P to start the 400-N wedge moving to the right. The angle of
friction for all contact surfaces is o = 20°.
WA = 2000 N
WB = 400 N
15°
4. The mine car and its
contents have a total mass of
6000 kg and a centre of
gravity at G. If the coefficient
of static friction
10 kN
between the wheels and the
0.9 m
•G
tracks is u = 0.4 when the
wheels are locked, find the
normal force acting on the
front wheels at B and the rear
0.15 m
0.6 m -
1.5 m
wheels at A when the brakes
at both A and B are locked.
Does the car move?
[Ans. NA = 16.5 kN, Ng =42.3
kN, the car does not move]
%3D
lyp
Chapter 4 Solutions
Statics and Mechanics of Materials (5th Edition)
Ch. 4.4 - Draw the free-body diagram of each object. Prob....Ch. 4.4 - Determine the horizontal and vertical components...Ch. 4.4 - Determine the horizontal and vertical components...Ch. 4.4 - The truss is supported by a pin at A and a roller...Ch. 4.4 - Determine the components of reaction at the fixed...Ch. 4.4 - The 25-kg bar has a center of mass at G. If it is...Ch. 4.4 - Determine the reactions at the smooth contact...Ch. 4.4 - Determine the components of the support reactions...Ch. 4.4 - Determine the reactions at the supports. Prob. 4-2Ch. 4.4 - Determine the horizontal and vertical components...
Ch. 4.4 - Determine the reactions at the supports. Prob. 4-4Ch. 4.4 - Determine the reactions at the supports. Prob. 4-5Ch. 4.4 - Determine the reactions at the supports. Prob. 4-6Ch. 4.4 - Determine the magnitude of force at the pin A and...Ch. 4.4 - The dimensions of a jib crane are given in the...Ch. 4.4 - The dimensions of a jib crane are given in the...Ch. 4.4 - The smooth pipe rests against the opening at the...Ch. 4.4 - The beam is horizontal and the springs are...Ch. 4.4 - The 10-kg uniform rod is pinned at end A. If it is...Ch. 4.4 - The man uses the hand truck to move material up...Ch. 4.4 - Three uniform books, each having a weight W and...Ch. 4.4 - Determine the reactions at the pin A and the...Ch. 4.4 - If rope BC will fail when the tension becomes 50...Ch. 4.4 - Prob. 17PCh. 4.4 - Prob. 18PCh. 4.4 - The cantilever footing is used to support a wall...Ch. 4.4 - Prob. 20PCh. 4.4 - A boy stands out at the end of the diving board,...Ch. 4.4 - Prob. 22PCh. 4.4 - Prob. 23PCh. 4.4 - Prob. 24PCh. 4.4 - Prob. 25PCh. 4.4 - The man attempts to pull the four wheeler up the...Ch. 4.6 - Draw the free-body diagram of each object.Ch. 4.6 - In each case, write the moment equations about the...Ch. 4.6 - Prob. 7FPCh. 4.6 - Prob. 8FPCh. 4.6 - The rod is supported by smooth journal bearings at...Ch. 4.6 - Determine the support reactions at the smooth...Ch. 4.6 - Determine the force developed in the short link...Ch. 4.6 - Determine the components of reaction that the...Ch. 4.6 - The uniform load has a mass of 600 kg and is...Ch. 4.6 - Due to an unequal distribution of fuel in the wing...Ch. 4.6 - Determine the components of reaction at the fixed...Ch. 4.6 - The 50-lb mulching machine has a center of gravity...Ch. 4.6 - Prob. 30PCh. 4.6 - The uniform concrete slab has a mass of 2400 kg....Ch. 4.6 - Prob. 32PCh. 4.6 - Determine the tension in each cable and the...Ch. 4.6 - The bent rod is supported at A, B, and C by smooth...Ch. 4.6 - Prob. 35PCh. 4.6 - The bar AB is supported by two smooth collars. At...Ch. 4.6 - The rod has a weight of 6 lb/ft. If it is...Ch. 4.6 - The sign has a mass of 100 kg with center of mass...Ch. 4.6 - Both pulleys cite fixed to the shaft and as the...Ch. 4.6 - Both pulleys are fixed to the shaft and as the...Ch. 4.6 - Prob. 41PCh. 4.8 - Determine the friction force at the surface of...Ch. 4.8 - Determine the couple moment M needed to cause...Ch. 4.8 - Prob. 6PPCh. 4.8 - Prob. 7PPCh. 4.8 - Prob. 13FPCh. 4.8 - Determine the minimum force P to prevent the 30-kg...Ch. 4.8 - Determine the maximum force P that can be applied...Ch. 4.8 - Prob. 16FPCh. 4.8 - Prob. 17FPCh. 4.8 - Prob. 18FPCh. 4.8 - Prob. 19FPCh. 4.8 - If the coefficient of static friction at all...Ch. 4.8 - Prob. 21FPCh. 4.8 - Prob. 42PCh. 4.8 - The tractor exerts a towing force T = 400 lb....Ch. 4.8 - The mine car and its contents have a total mass of...Ch. 4.8 - The winch on the truck is used to hoist the...Ch. 4.8 - Prob. 46PCh. 4.8 - The automobile has a mass of 2 Mg and center of...Ch. 4.8 - Prob. 48PCh. 4.8 - Prob. 49PCh. 4.8 - Prob. 50PCh. 4.8 - Determine the angle at which the applied force P...Ch. 4.8 - Prob. 52PCh. 4.8 - The 180-lb man climbs up the ladder and stops at...Ch. 4.8 - The 180-lb man climbs up the ladder and stops at...Ch. 4.8 - The spool of wire having a weight of 300 lb rests...Ch. 4.8 - The spool of wire having a weight of 300 lb rests...Ch. 4.8 - The ring has a mass of 0.5 kg and is resting on...Ch. 4.8 - Determine the smallest force P that must be...Ch. 4.8 - The man having a weight of 200 lb pushes...Ch. 4.8 - The uniform hoop of weight W is subjected to the...Ch. 4.8 - Prob. 61PCh. 4.8 - Prob. 62PCh. 4.8 - Prob. 63PCh. 4.8 - The coefficient of static Friction between the...Ch. 4 - If the roller at B can sustain a maximum load of 3...Ch. 4 - Determine the reactions at the supports A and B...Ch. 4 - Determine the normal reaction at the roller A and...Ch. 4 - Determine the horizontal and vertical components...Ch. 4 - Determine the x, y, z components of reaction at...Ch. 4 - Prob. 6RPCh. 4 - Prob. 7RPCh. 4 - The uniform 60-kg crate C rests uniformly on a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Determine the greatest angle 0 so that the ladder does not slip when it supports the man (of the mass of m) in the position shown. The coefficient of static friction at A and B is Hs. Ignore the weight of the ladder. Use m = 93 kg, Hs = 0.48, a=2.5m, b=0.25m, g = 9.81 m/s?. b a e to the nearest integer (deg) =arrow_forwardQ1: The tractor has a weight of 4500 lb with center of gravity at G. The driving traction is developed at the rear wheels B, while the front wheels at A are free to roll. If the Q2: The mine car and its contents have a total mass of 9 Mg and a center of gravity at G. If the coefficient of static friction between the wheels and the tracks is u, = 0.4 when the wheels are locked, find the normal force acting on the coefficient of static friction between the wheels at B and the ground is u, = 0.5, determine if it is possible to pull at P = 1350 lb without causing the wheels at B to slip or the front wheels at A to lift off the ground. front wheels at B and the rear wheels at A when the brakes at both A and B are locked. Does the car move? 10 kN 0.9 m G 0.15 m 3.5 ft 1.25 ft 0.6 m- 4 ft -1.5 m- 2.5 ftarrow_forwardThe disk clutch is used in standard transmissions of automobiles. If four springs are used to force two plates A and B together, determine the force in each spring required to transmit a moment of M = 600lb-ft across the plates. The coefficient of static friction between A and B is u, = 0.3.arrow_forward
- The mine car and its contents have a total mass of 7.1 Mg and a center of gravity at G . If the coefficient of static friction between the wheels and the tracks is μs = 0.34 when the wheels are locked, find the following: 1 The normal force acting on the front wheels at B is Blank 1 kN when the brakes at both A and B are locked. 2 The normal force acting on the rear wheels at A is Blank 2 kN when the brakes at both A and B are locked. 3 The friction force acting on the front wheels at B is Blank 3 kN when the brakes at both A and B are locked. 4 The friction force acting on the rear wheels at A is Blank 4 kN when the brakes at both A and B are locked. 5 With the given information above, does the car move? Answer with Yes or No only. Blank 5arrow_forwardPlease help with the attached problem.arrow_forwardFind the value s so that the worker can climb the ladder without causing it to slip. The weight of the worker is 90-kg and neglect the weight of the ladder. The ladder has a small roller at the top and at the ground the coefficient of static friction is 0.25. The center of mass of the worker is directly above her feet. B 4 m 1.5 marrow_forward
- The car has a mass of 1.6 MgMg and center of mass at GG. If the coefficient of static friction between the shoulder of the road and the tires is μsμsmu_s = 0.40, determine the greatest slope θθ the shoulder can have without causing the car to slip or tip over if the car travels along the shoulder at constant velocity. Draw the free-body diagram of the car. Draw the vectors starting at the black dots. The location and orientation of the vectors will be graded.arrow_forward17/ The fertilizer spreader and the fertilizer it contains have a combined mass of 40 kg and a center of gravity located at point G. If the coefficient of rolling resistance for the tires is 5 mm, determine the horizontal and vertical components, Px and Py, of the force that must be applied to the handle to move the spreader at a constant speed. - 250 mm Px 100 mm- Py I G+ 850 mm Radius = 120 mmarrow_forward1) Determine the average braking torque to be applied to stop the vehicle of mass 1.5 ton is movingdown the hill at a slope of 1:7 at 60 kmph and the vehicle is to be stopped at a distance of 50 m.Take the diameter of the vehicle tyre as 500 mm. If the friction energy is momentarily stored in a20 kg cast iron brake drum, what is the average temperature rise of the drum? The specific heat forcast iron may be taken as 520 J/kg ˚C.arrow_forward
- Find the smallest distance d for which the hook will remain at rest when acted on by the force P. Neglect the weight of the hook, and assume that the vertical wall is frictionless.arrow_forwardThe man pushes on the roller with force P through a handle that connects to the central axle of the roller. If the coefficient of static friction between the 49-lb roller and the floor is s = 0.22, determine the maximum force Pthat can be applied to the handle, so that roller rolls on the ground without slipping. Assume the roller to be a uniform cylinder. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point, and proper unit. Take g = 32.2 ft/s2. 1.5 ft 30° Your Answer: Answer unitsarrow_forward17-47 The four-wheeler has a weight of 335 Ib and a center of gravity at G1, whereas the rider has a weight of 150 lb and a center of gravity at Gz. If the engine can develop enough torque to cause the rear wheels to slip, determine the largest coefficient of static friction between the rear wheels and the ground so that the vehicle will accelerate without tipping over. What is this maximum acceleration? In order to increase the acceleration, should the rider crouch down or sit up straight from the position shown? Explain. The front wheels are free to roll. Neglect the mass of the wheels in thearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Mechanics of Materials Lecture: Beam Design; Author: UWMC Engineering;https://www.youtube.com/watch?v=-wVs5pvQPm4;License: Standard Youtube License