Statics and Mechanics of Materials (5th Edition)
5th Edition
ISBN: 9780134382593
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.6, Problem 11FP
Determine the force developed in the short link BD, and the tension in the cords CE and CF, and the reactions of the ball-and-socket joint A on the block.
Prob. F4-11
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4-8. The 100-lb block M of Fig. P4-8 and the 50-lb
block N are held in equilibrium by the system shown.
Draw free-body diagrams of the four rigid members
of the system.
P4-8
4 of 8
5-27. As an airplane's brakes are applied, the nose wheel
exerts two forces on the end of the landing gear as shown.
Determine the horizontal and vertical components of
reaction at the pin C and the force in strut AB.
B.
30
400 mm
20°
600 mm
2 kN
6 kN
4-42. Determine the horizontal and vertical compo-
nents of the pin reaction at B of Fig. P4-42 on mem-
ber ABC. The 2000-lb force is applied to a rope
which passes over the smooth pulley at A. Neglect
the weights of all members.
2000b
4'
2
3'
3'
P4-42
31
Chapter 4 Solutions
Statics and Mechanics of Materials (5th Edition)
Ch. 4.4 - Draw the free-body diagram of each object. Prob....Ch. 4.4 - Determine the horizontal and vertical components...Ch. 4.4 - Determine the horizontal and vertical components...Ch. 4.4 - The truss is supported by a pin at A and a roller...Ch. 4.4 - Determine the components of reaction at the fixed...Ch. 4.4 - The 25-kg bar has a center of mass at G. If it is...Ch. 4.4 - Determine the reactions at the smooth contact...Ch. 4.4 - Determine the components of the support reactions...Ch. 4.4 - Determine the reactions at the supports. Prob. 4-2Ch. 4.4 - Determine the horizontal and vertical components...
Ch. 4.4 - Determine the reactions at the supports. Prob. 4-4Ch. 4.4 - Determine the reactions at the supports. Prob. 4-5Ch. 4.4 - Determine the reactions at the supports. Prob. 4-6Ch. 4.4 - Determine the magnitude of force at the pin A and...Ch. 4.4 - The dimensions of a jib crane are given in the...Ch. 4.4 - The dimensions of a jib crane are given in the...Ch. 4.4 - The smooth pipe rests against the opening at the...Ch. 4.4 - The beam is horizontal and the springs are...Ch. 4.4 - The 10-kg uniform rod is pinned at end A. If it is...Ch. 4.4 - The man uses the hand truck to move material up...Ch. 4.4 - Three uniform books, each having a weight W and...Ch. 4.4 - Determine the reactions at the pin A and the...Ch. 4.4 - If rope BC will fail when the tension becomes 50...Ch. 4.4 - Prob. 17PCh. 4.4 - Prob. 18PCh. 4.4 - The cantilever footing is used to support a wall...Ch. 4.4 - Prob. 20PCh. 4.4 - A boy stands out at the end of the diving board,...Ch. 4.4 - Prob. 22PCh. 4.4 - Prob. 23PCh. 4.4 - Prob. 24PCh. 4.4 - Prob. 25PCh. 4.4 - The man attempts to pull the four wheeler up the...Ch. 4.6 - Draw the free-body diagram of each object.Ch. 4.6 - In each case, write the moment equations about the...Ch. 4.6 - Prob. 7FPCh. 4.6 - Prob. 8FPCh. 4.6 - The rod is supported by smooth journal bearings at...Ch. 4.6 - Determine the support reactions at the smooth...Ch. 4.6 - Determine the force developed in the short link...Ch. 4.6 - Determine the components of reaction that the...Ch. 4.6 - The uniform load has a mass of 600 kg and is...Ch. 4.6 - Due to an unequal distribution of fuel in the wing...Ch. 4.6 - Determine the components of reaction at the fixed...Ch. 4.6 - The 50-lb mulching machine has a center of gravity...Ch. 4.6 - Prob. 30PCh. 4.6 - The uniform concrete slab has a mass of 2400 kg....Ch. 4.6 - Prob. 32PCh. 4.6 - Determine the tension in each cable and the...Ch. 4.6 - The bent rod is supported at A, B, and C by smooth...Ch. 4.6 - Prob. 35PCh. 4.6 - The bar AB is supported by two smooth collars. At...Ch. 4.6 - The rod has a weight of 6 lb/ft. If it is...Ch. 4.6 - The sign has a mass of 100 kg with center of mass...Ch. 4.6 - Both pulleys cite fixed to the shaft and as the...Ch. 4.6 - Both pulleys are fixed to the shaft and as the...Ch. 4.6 - Prob. 41PCh. 4.8 - Determine the friction force at the surface of...Ch. 4.8 - Determine the couple moment M needed to cause...Ch. 4.8 - Prob. 6PPCh. 4.8 - Prob. 7PPCh. 4.8 - Prob. 13FPCh. 4.8 - Determine the minimum force P to prevent the 30-kg...Ch. 4.8 - Determine the maximum force P that can be applied...Ch. 4.8 - Prob. 16FPCh. 4.8 - Prob. 17FPCh. 4.8 - Prob. 18FPCh. 4.8 - Prob. 19FPCh. 4.8 - If the coefficient of static friction at all...Ch. 4.8 - Prob. 21FPCh. 4.8 - Prob. 42PCh. 4.8 - The tractor exerts a towing force T = 400 lb....Ch. 4.8 - The mine car and its contents have a total mass of...Ch. 4.8 - The winch on the truck is used to hoist the...Ch. 4.8 - Prob. 46PCh. 4.8 - The automobile has a mass of 2 Mg and center of...Ch. 4.8 - Prob. 48PCh. 4.8 - Prob. 49PCh. 4.8 - Prob. 50PCh. 4.8 - Determine the angle at which the applied force P...Ch. 4.8 - Prob. 52PCh. 4.8 - The 180-lb man climbs up the ladder and stops at...Ch. 4.8 - The 180-lb man climbs up the ladder and stops at...Ch. 4.8 - The spool of wire having a weight of 300 lb rests...Ch. 4.8 - The spool of wire having a weight of 300 lb rests...Ch. 4.8 - The ring has a mass of 0.5 kg and is resting on...Ch. 4.8 - Determine the smallest force P that must be...Ch. 4.8 - The man having a weight of 200 lb pushes...Ch. 4.8 - The uniform hoop of weight W is subjected to the...Ch. 4.8 - Prob. 61PCh. 4.8 - Prob. 62PCh. 4.8 - Prob. 63PCh. 4.8 - The coefficient of static Friction between the...Ch. 4 - If the roller at B can sustain a maximum load of 3...Ch. 4 - Determine the reactions at the supports A and B...Ch. 4 - Determine the normal reaction at the roller A and...Ch. 4 - Determine the horizontal and vertical components...Ch. 4 - Determine the x, y, z components of reaction at...Ch. 4 - Prob. 6RPCh. 4 - Prob. 7RPCh. 4 - The uniform 60-kg crate C rests uniformly on a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 5-13. Determine the horizontal and vertical comp nents of reaction at C and the tension in the cable AB t the truss 30 2 m V3 kN V4 kN 2 m 2 m 2 marrow_forwardR3-5. The joint of a space frame is subjected to four member forces. Member OA lies in the x-y plane and member OB lies in the y-z plane. Determine the force acting in each of the members required for equilibrium of the joint. Fs 200 N Prob. R3-5 Barrow_forward4-30. Determine the tension in cables BD and CD and the x, y, z components of reaction at the ball-and-socket joint at A. 300 N в, 1.5 m 0.5 marrow_forward
- Q4 - A: Calculate the forces in members AG,AB, CG, GF and CF for the truss shown. 2 kN B 2m C 2 m D A 4 kN F 2 m E 3 marrow_forwardneed help with this problem and if you don't mind explaining the process that would be helpful thanksarrow_forward4-22. As an airplane's brakes are applied, the nose wheel exerts two forces on the end of the landing gear as shown. Determine the horizontal and vertical components of reaction at the pin Cand the force in strut AB. 400 mm 20° 600 mm 2 kN 6 kNarrow_forward
- A uniform pipe cover of radius r240 mm and mass 30 kg is held in a hor- izontal position by the cable CD Assuming that the bearing at B does not exert any axial thrust, determine the tension in the cable and the reactions at A and B. 160 mm 240 mm 240 mm 240 mm B r=240 mmarrow_forward4-32. Determine the force P of Fig. P4-32 that will maintain equilibrium. 400lb P4-32arrow_forwardThe smooth uniform rod AB is supported by a ball-and-socket joint at A, the wall at B, and the cableBC. Determine the components of reactions at A, the tension in the cable, and the normal reaction at Bif the rod has a mass of 20 kg. Provide a free-body-diagram.arrow_forward
- 4-15. Determine the force F of Fig. P4-15 which must be appliod to ring A in order to keep the 100-lb cylinder B in equilibrium. P4-15arrow_forward*4-32. Determine the magnitude of force F that must be exerted on the handle at C to hold the 75-kg crate in the position shown. Aso, determine the components of reaction at the thrust bearing A and smooth journal bearing B. 0.1 m 0.6 m. 0.5 m 02 m 0.1 marrow_forwardQ4 Determine the force in members BC, HC, and HG. After the truss is sectioned use a single equation of equilibrium for the calculation of each force. State if these members are in tension or compression. 5 kN 4 kN 4 kN 3 kN 2 kN B D E 3 m H F 2 m 5 m- -5 m- -5 m- -5 m-arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Force | Free Body Diagrams | Physics | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4Bwwq1munB0;License: Standard YouTube License, CC-BY