Statics and Mechanics of Materials (5th Edition)
5th Edition
ISBN: 9780134382593
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4.8, Problem 42P
To determine
Find the maximum force (P).
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
*4-56. Two blocks A and B have a weight of 50 N and 30
N, respectively. They are resting on the incline for which the
coefficients of static friction are pa = 0.15 and ug = 025.
Determine the angle ở which will cause motion of one of the
blocks. What is the friction force under each of the blocks
when this occurs? The spring has a stiffness of k = 30 N/m
and is originally unstretched.
k- 30 N/m
F4-18. Determine the minimum coefficient of static
friction between the uniform 50-kg spool and the wall so
that the spool does not slip.
B.
0.6 m-
03 m
4-58. The coefficients of static and kinetic friction
between the drum and brake bar are p. = 0.4 and ua = 0.3,
respectively. If M - 50 N- m and P - 85 N, determine the
horizontal and vertical components of reaction at the pin 0.
Neglect the weight and thickness of the brake. The drum has
a mass of 25 kg.
300 mm
-700 mm-
B.
F125 mm
500 mm
Chapter 4 Solutions
Statics and Mechanics of Materials (5th Edition)
Ch. 4.4 - Draw the free-body diagram of each object. Prob....Ch. 4.4 - Determine the horizontal and vertical components...Ch. 4.4 - Determine the horizontal and vertical components...Ch. 4.4 - The truss is supported by a pin at A and a roller...Ch. 4.4 - Determine the components of reaction at the fixed...Ch. 4.4 - The 25-kg bar has a center of mass at G. If it is...Ch. 4.4 - Determine the reactions at the smooth contact...Ch. 4.4 - Determine the components of the support reactions...Ch. 4.4 - Determine the reactions at the supports. Prob. 4-2Ch. 4.4 - Determine the horizontal and vertical components...
Ch. 4.4 - Determine the reactions at the supports. Prob. 4-4Ch. 4.4 - Determine the reactions at the supports. Prob. 4-5Ch. 4.4 - Determine the reactions at the supports. Prob. 4-6Ch. 4.4 - Determine the magnitude of force at the pin A and...Ch. 4.4 - The dimensions of a jib crane are given in the...Ch. 4.4 - The dimensions of a jib crane are given in the...Ch. 4.4 - The smooth pipe rests against the opening at the...Ch. 4.4 - The beam is horizontal and the springs are...Ch. 4.4 - The 10-kg uniform rod is pinned at end A. If it is...Ch. 4.4 - The man uses the hand truck to move material up...Ch. 4.4 - Three uniform books, each having a weight W and...Ch. 4.4 - Determine the reactions at the pin A and the...Ch. 4.4 - If rope BC will fail when the tension becomes 50...Ch. 4.4 - Prob. 17PCh. 4.4 - Prob. 18PCh. 4.4 - The cantilever footing is used to support a wall...Ch. 4.4 - Prob. 20PCh. 4.4 - A boy stands out at the end of the diving board,...Ch. 4.4 - Prob. 22PCh. 4.4 - Prob. 23PCh. 4.4 - Prob. 24PCh. 4.4 - Prob. 25PCh. 4.4 - The man attempts to pull the four wheeler up the...Ch. 4.6 - Draw the free-body diagram of each object.Ch. 4.6 - In each case, write the moment equations about the...Ch. 4.6 - Prob. 7FPCh. 4.6 - Prob. 8FPCh. 4.6 - The rod is supported by smooth journal bearings at...Ch. 4.6 - Determine the support reactions at the smooth...Ch. 4.6 - Determine the force developed in the short link...Ch. 4.6 - Determine the components of reaction that the...Ch. 4.6 - The uniform load has a mass of 600 kg and is...Ch. 4.6 - Due to an unequal distribution of fuel in the wing...Ch. 4.6 - Determine the components of reaction at the fixed...Ch. 4.6 - The 50-lb mulching machine has a center of gravity...Ch. 4.6 - Prob. 30PCh. 4.6 - The uniform concrete slab has a mass of 2400 kg....Ch. 4.6 - Prob. 32PCh. 4.6 - Determine the tension in each cable and the...Ch. 4.6 - The bent rod is supported at A, B, and C by smooth...Ch. 4.6 - Prob. 35PCh. 4.6 - The bar AB is supported by two smooth collars. At...Ch. 4.6 - The rod has a weight of 6 lb/ft. If it is...Ch. 4.6 - The sign has a mass of 100 kg with center of mass...Ch. 4.6 - Both pulleys cite fixed to the shaft and as the...Ch. 4.6 - Both pulleys are fixed to the shaft and as the...Ch. 4.6 - Prob. 41PCh. 4.8 - Determine the friction force at the surface of...Ch. 4.8 - Determine the couple moment M needed to cause...Ch. 4.8 - Prob. 6PPCh. 4.8 - Prob. 7PPCh. 4.8 - Prob. 13FPCh. 4.8 - Determine the minimum force P to prevent the 30-kg...Ch. 4.8 - Determine the maximum force P that can be applied...Ch. 4.8 - Prob. 16FPCh. 4.8 - Prob. 17FPCh. 4.8 - Prob. 18FPCh. 4.8 - Prob. 19FPCh. 4.8 - If the coefficient of static friction at all...Ch. 4.8 - Prob. 21FPCh. 4.8 - Prob. 42PCh. 4.8 - The tractor exerts a towing force T = 400 lb....Ch. 4.8 - The mine car and its contents have a total mass of...Ch. 4.8 - The winch on the truck is used to hoist the...Ch. 4.8 - Prob. 46PCh. 4.8 - The automobile has a mass of 2 Mg and center of...Ch. 4.8 - Prob. 48PCh. 4.8 - Prob. 49PCh. 4.8 - Prob. 50PCh. 4.8 - Determine the angle at which the applied force P...Ch. 4.8 - Prob. 52PCh. 4.8 - The 180-lb man climbs up the ladder and stops at...Ch. 4.8 - The 180-lb man climbs up the ladder and stops at...Ch. 4.8 - The spool of wire having a weight of 300 lb rests...Ch. 4.8 - The spool of wire having a weight of 300 lb rests...Ch. 4.8 - The ring has a mass of 0.5 kg and is resting on...Ch. 4.8 - Determine the smallest force P that must be...Ch. 4.8 - The man having a weight of 200 lb pushes...Ch. 4.8 - The uniform hoop of weight W is subjected to the...Ch. 4.8 - Prob. 61PCh. 4.8 - Prob. 62PCh. 4.8 - Prob. 63PCh. 4.8 - The coefficient of static Friction between the...Ch. 4 - If the roller at B can sustain a maximum load of 3...Ch. 4 - Determine the reactions at the supports A and B...Ch. 4 - Determine the normal reaction at the roller A and...Ch. 4 - Determine the horizontal and vertical components...Ch. 4 - Determine the x, y, z components of reaction at...Ch. 4 - Prob. 6RPCh. 4 - Prob. 7RPCh. 4 - The uniform 60-kg crate C rests uniformly on a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The coefficient of static friction between the drum 300 mm -700 mm and brake bar is H = 0-4. If the moment -125 mm M = 35 N-m, determine the smallest force P that S00 mm needs to be applied to the brake bar in order to prevent the drum from rotating. Also determine the corresponding horizontal and vertical components of reaction at pin 0. Neglect the weight and thickness of the brake bar. The drum has a mass of 25Kg.arrow_forward4-44. The tongs are used to lift the 150-kg crate, whose center of mass is at G. Determine the least coefficient of static friction at the pivot blocks so that the crate can be lifted. 275 mm 500 mm 500 mm 300 mmarrow_forward3.must draw fbdarrow_forward
- Determine the horizontal force P to start the 400-N wedge moving to the right. The angle of friction for all contact surfaces is o = 20°. WA = 2000 N WB = 400 N 15°arrow_forward4-62. The uniform hoop of weight W is subjected to the horizontal force P. Determine the coefficient of static friction between the hoop and the surface at A and Bif the hoop is on the verge of rotating.arrow_forward4-79. The man has a mass of 40 kg. He plans to scale the vertical crevice using the method shown. If the coefficient of static friction between his shoes and the rock is u) = 0.4 and between his backside and the rock, = 0.3, determine the smallest horizontal force his body must exert on the rock in order to do this.arrow_forward
- *4-60. The drum has a weight of 500 N and rests on the floor for which the coefficient of static friction is 4, = 0.6. If a = 0.6 m and b = 0.9 m, determine the smallest magnitude of the force P that will cause impending motion of the drum.arrow_forward*R4-8. The uniform 60-kg crate C rests uniformly on a 10-kg dolly D. If the front wheels of the dolly at A are locked to prevent rolling while the wheels at B are free to roll, determine the maximum force P that may be applied without causing motion of the crate. The coefficient of static friction between the wheels and the floor is p, - 0.35 and between the dolly and the crate, p - 0.5. L06 m- 15 m 0.8 m 025 m 0.25 m 1.5 marrow_forward4-46. The 90-kg man climbs up the ladder and stops at the position shown after he senses that the ladder is on the verge of slipping. Determine the inclination e of the ladder if the coefficient of static friction between the friction pad A and the ground is u, = 0.4. Assume the wall at Bis smooth. The center of gravity for the man is at G. Neglect the weight of the ladder. 3m Fooarrow_forward
- A 0.8 lb roll of paper is suspended from a wire hanger so that it rests against the wall. The hanger has a negligible weight and the bearing O can be considered as frictionless. The two ends of the hanger can be treated as pin joints. Determine the force P required to start turning the roll if theta = 37 degrees and the coefficient of static friction is 0.29.arrow_forwardIf the clamping force at G is 900 N, determine the horizontal force F that must be applied perpendicular to the handle of the lever at E. The mean diameter and lead of both single square- threaded screws at C and D are 25 mm and 5 mm, respectively. The coefficient of static friction is μ = 0.3. -200 mm- OA 200 mm B. C D E 125 mmarrow_forward4-63. Determine the maximum horizontal force P that can be applied to the 15-kg hoop without causing it to rotate. The coefficient of static friction between the hoop and the surfaces A and B is u, = 0.2. Take r = 300 mm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
EVERYTHING on Axial Loading Normal Stress in 10 MINUTES - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=jQ-fNqZWrNg;License: Standard YouTube License, CC-BY