Statics and Mechanics of Materials (5th Edition)
5th Edition
ISBN: 9780134382593
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 4.8, Problem 63P
To determine
Find the horizontal and vertical components of reaction at the pin
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The coefficient of static friction between the drum
300 mm
-700 mm
and brake bar is H = 0-4. If the moment
-125 mm
M = 35 N-m, determine the smallest force P that
S00 mm
needs to be applied to the brake bar in order to
prevent the drum from rotating. Also determine the
corresponding horizontal and vertical components of
reaction at pin 0. Neglect the weight and thickness of the brake bar. The drum has a mass of
25Kg.
4-45. The mine car and its contents have a total mass of
6 Mg and a center of gravity at G. If the coefficient of static
friction between the wheels and the tracks is , = 0.4 when
the wheels are locked, find the normal force acting on the
front wheels at B and the rear wheels at A when the brakes
at both A and B are locked. Does the car move?
10 kN
0.9 m
0.15 m
-0.6 m
-1.5 m-
Prob. 4-45
*4-60. The drum has a weight of 500 N and rests on the
floor for which the coefficient of static friction is 4, = 0.6.
If a = 0.6 m and b = 0.9 m, determine the smallest
magnitude of the force P that will cause impending motion
of the drum.
Chapter 4 Solutions
Statics and Mechanics of Materials (5th Edition)
Ch. 4.4 - Draw the free-body diagram of each object. Prob....Ch. 4.4 - Determine the horizontal and vertical components...Ch. 4.4 - Determine the horizontal and vertical components...Ch. 4.4 - The truss is supported by a pin at A and a roller...Ch. 4.4 - Determine the components of reaction at the fixed...Ch. 4.4 - The 25-kg bar has a center of mass at G. If it is...Ch. 4.4 - Determine the reactions at the smooth contact...Ch. 4.4 - Determine the components of the support reactions...Ch. 4.4 - Determine the reactions at the supports. Prob. 4-2Ch. 4.4 - Determine the horizontal and vertical components...
Ch. 4.4 - Determine the reactions at the supports. Prob. 4-4Ch. 4.4 - Determine the reactions at the supports. Prob. 4-5Ch. 4.4 - Determine the reactions at the supports. Prob. 4-6Ch. 4.4 - Determine the magnitude of force at the pin A and...Ch. 4.4 - The dimensions of a jib crane are given in the...Ch. 4.4 - The dimensions of a jib crane are given in the...Ch. 4.4 - The smooth pipe rests against the opening at the...Ch. 4.4 - The beam is horizontal and the springs are...Ch. 4.4 - The 10-kg uniform rod is pinned at end A. If it is...Ch. 4.4 - The man uses the hand truck to move material up...Ch. 4.4 - Three uniform books, each having a weight W and...Ch. 4.4 - Determine the reactions at the pin A and the...Ch. 4.4 - If rope BC will fail when the tension becomes 50...Ch. 4.4 - Prob. 17PCh. 4.4 - Prob. 18PCh. 4.4 - The cantilever footing is used to support a wall...Ch. 4.4 - Prob. 20PCh. 4.4 - A boy stands out at the end of the diving board,...Ch. 4.4 - Prob. 22PCh. 4.4 - Prob. 23PCh. 4.4 - Prob. 24PCh. 4.4 - Prob. 25PCh. 4.4 - The man attempts to pull the four wheeler up the...Ch. 4.6 - Draw the free-body diagram of each object.Ch. 4.6 - In each case, write the moment equations about the...Ch. 4.6 - Prob. 7FPCh. 4.6 - Prob. 8FPCh. 4.6 - The rod is supported by smooth journal bearings at...Ch. 4.6 - Determine the support reactions at the smooth...Ch. 4.6 - Determine the force developed in the short link...Ch. 4.6 - Determine the components of reaction that the...Ch. 4.6 - The uniform load has a mass of 600 kg and is...Ch. 4.6 - Due to an unequal distribution of fuel in the wing...Ch. 4.6 - Determine the components of reaction at the fixed...Ch. 4.6 - The 50-lb mulching machine has a center of gravity...Ch. 4.6 - Prob. 30PCh. 4.6 - The uniform concrete slab has a mass of 2400 kg....Ch. 4.6 - Prob. 32PCh. 4.6 - Determine the tension in each cable and the...Ch. 4.6 - The bent rod is supported at A, B, and C by smooth...Ch. 4.6 - Prob. 35PCh. 4.6 - The bar AB is supported by two smooth collars. At...Ch. 4.6 - The rod has a weight of 6 lb/ft. If it is...Ch. 4.6 - The sign has a mass of 100 kg with center of mass...Ch. 4.6 - Both pulleys cite fixed to the shaft and as the...Ch. 4.6 - Both pulleys are fixed to the shaft and as the...Ch. 4.6 - Prob. 41PCh. 4.8 - Determine the friction force at the surface of...Ch. 4.8 - Determine the couple moment M needed to cause...Ch. 4.8 - Prob. 6PPCh. 4.8 - Prob. 7PPCh. 4.8 - Prob. 13FPCh. 4.8 - Determine the minimum force P to prevent the 30-kg...Ch. 4.8 - Determine the maximum force P that can be applied...Ch. 4.8 - Prob. 16FPCh. 4.8 - Prob. 17FPCh. 4.8 - Prob. 18FPCh. 4.8 - Prob. 19FPCh. 4.8 - If the coefficient of static friction at all...Ch. 4.8 - Prob. 21FPCh. 4.8 - Prob. 42PCh. 4.8 - The tractor exerts a towing force T = 400 lb....Ch. 4.8 - The mine car and its contents have a total mass of...Ch. 4.8 - The winch on the truck is used to hoist the...Ch. 4.8 - Prob. 46PCh. 4.8 - The automobile has a mass of 2 Mg and center of...Ch. 4.8 - Prob. 48PCh. 4.8 - Prob. 49PCh. 4.8 - Prob. 50PCh. 4.8 - Determine the angle at which the applied force P...Ch. 4.8 - Prob. 52PCh. 4.8 - The 180-lb man climbs up the ladder and stops at...Ch. 4.8 - The 180-lb man climbs up the ladder and stops at...Ch. 4.8 - The spool of wire having a weight of 300 lb rests...Ch. 4.8 - The spool of wire having a weight of 300 lb rests...Ch. 4.8 - The ring has a mass of 0.5 kg and is resting on...Ch. 4.8 - Determine the smallest force P that must be...Ch. 4.8 - The man having a weight of 200 lb pushes...Ch. 4.8 - The uniform hoop of weight W is subjected to the...Ch. 4.8 - Prob. 61PCh. 4.8 - Prob. 62PCh. 4.8 - Prob. 63PCh. 4.8 - The coefficient of static Friction between the...Ch. 4 - If the roller at B can sustain a maximum load of 3...Ch. 4 - Determine the reactions at the supports A and B...Ch. 4 - Determine the normal reaction at the roller A and...Ch. 4 - Determine the horizontal and vertical components...Ch. 4 - Determine the x, y, z components of reaction at...Ch. 4 - Prob. 6RPCh. 4 - Prob. 7RPCh. 4 - The uniform 60-kg crate C rests uniformly on a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Question 3: The coefficients of static and kinetic friction between the drum and brake bar are ls= 0.4 and Hx= 0.3, respectively. If M= 50 N.m and P= 85 N. determine the horizontal and vertical components of reaction at the pin O (shown in Fig. 3). Neglect the weight and thickness of the brake. The drum has a mass of 25 kg. 300 mm -700 mm- B -125 mm 500 mm M P A Fig. 3. Brake systemarrow_forward*4-56. Two blocks A and B have a weight of 50 N and 30 N, respectively. They are resting on the incline for which the coefficients of static friction are pa = 0.15 and ug = 025. Determine the angle ở which will cause motion of one of the blocks. What is the friction force under each of the blocks when this occurs? The spring has a stiffness of k = 30 N/m and is originally unstretched. k- 30 N/marrow_forward4-44. The tongs are used to lift the 150-kg crate, whose center of mass is at G. Determine the least coefficient of static friction at the pivot blocks so that the crate can be lifted. 275 mm 500 mm 500 mm 300 mmarrow_forward
- 4-43. Determine the maximum force P the connection can support so that no slipping occurs between the plates. There are four bolts used for the connection and each is tightened so that it is subjected to a tension of 4 kN. The coefficient of static friction between the plates is u, = 0.4. Prob. 4-43arrow_forward4-63. Determine the maximum horizontal force P that can be applied to the 15-kg hoop without causing it to rotate. The coefficient of static friction between the hoop and the surfaces A and B is u, = 0.2. Take r = 300 mm.arrow_forwardR4-7. The uniform 20-kg ladder rests on the rough floor for which the coefficient of static friction is u, - 0.4 and against the smooth wall at B. Determine the horizontal force P the man must exert on the ladder in order to cause it to move. 25 m 4 m 2.5 marrow_forward
- The coefficients of static and kinetic friction between the drum and brake bar are μS= 0.4 and μK= 0.3, respectively. If M= 50 N.m and P= 85 N. determine the horizontal and vertical components of reaction at the pin O (shown in Fig. 3). Neglect the weight and thickness of the brake. The drum has a mass of 25 kg.arrow_forwardP4-4. Determine the friction force at the surface of contact. 500 N W = 200 N H = 02arrow_forward4-79. The man has a mass of 40 kg. He plans to scale the vertical crevice using the method shown. If the coefficient of static friction between his shoes and the rock is u) = 0.4 and between his backside and the rock, = 0.3, determine the smallest horizontal force his body must exert on the rock in order to do this.arrow_forward
- 4-46. The 90-kg man climbs up the ladder and stops at the position shown after he senses that the ladder is on the verge of slipping. Determine the inclination e of the ladder if the coefficient of static friction between the friction pad A and the ground is u, = 0.4. Assume the wall at Bis smooth. The center of gravity for the man is at G. Neglect the weight of the ladder. 3m Fooarrow_forward4-57. The ring has a mass of 0.5 kg and is resting on the surface of the table. To move the ring a normal force P from the finger is exerted on it as shown. Determine its magnitude when the ring is on the verge of slipping at A. The coefficient of static friction at A is p = 0.2 and at B, µg = 0.3. 60 75 mmarrow_forward4-42. If the coefficient of static friction at A is p, = 0.4 and the collar at B is smooth so it only exerts a horizontal force on the pipe, determine the minimum distance x so that the bracket can support the cylinder of any mass without slipping. Neglect the mass of the bracket. 100 mm 200 mmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
How to balance a see saw using moments example problem; Author: Engineer4Free;https://www.youtube.com/watch?v=d7tX37j-iHU;License: Standard Youtube License