Statics and Mechanics of Materials (5th Edition)
5th Edition
ISBN: 9780134382593
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 4.6, Problem 41P
To determine
Find the components of reaction at A and the tension in cable needed to hold the 800 lb cylinder in equilibrium.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4-8. The 100-lb block M of Fig. P4-8 and the 50-lb
block N are held in equilibrium by the system shown.
Draw free-body diagrams of the four rigid members
of the system.
P4-8
4-15. Determine the force F of Fig. P4-15 which
must be appliod to ring A in order to keep the 100-lb
cylinder B in equilibrium.
P4-15
4-42. Determine the horizontal and vertical compo-
nents of the pin reaction at B of Fig. P4-42 on mem-
ber ABC. The 2000-lb force is applied to a rope
which passes over the smooth pulley at A. Neglect
the weights of all members.
2000b
4'
2
3'
3'
P4-42
31
Chapter 4 Solutions
Statics and Mechanics of Materials (5th Edition)
Ch. 4.4 - Draw the free-body diagram of each object. Prob....Ch. 4.4 - Determine the horizontal and vertical components...Ch. 4.4 - Determine the horizontal and vertical components...Ch. 4.4 - The truss is supported by a pin at A and a roller...Ch. 4.4 - Determine the components of reaction at the fixed...Ch. 4.4 - The 25-kg bar has a center of mass at G. If it is...Ch. 4.4 - Determine the reactions at the smooth contact...Ch. 4.4 - Determine the components of the support reactions...Ch. 4.4 - Determine the reactions at the supports. Prob. 4-2Ch. 4.4 - Determine the horizontal and vertical components...
Ch. 4.4 - Determine the reactions at the supports. Prob. 4-4Ch. 4.4 - Determine the reactions at the supports. Prob. 4-5Ch. 4.4 - Determine the reactions at the supports. Prob. 4-6Ch. 4.4 - Determine the magnitude of force at the pin A and...Ch. 4.4 - The dimensions of a jib crane are given in the...Ch. 4.4 - The dimensions of a jib crane are given in the...Ch. 4.4 - The smooth pipe rests against the opening at the...Ch. 4.4 - The beam is horizontal and the springs are...Ch. 4.4 - The 10-kg uniform rod is pinned at end A. If it is...Ch. 4.4 - The man uses the hand truck to move material up...Ch. 4.4 - Three uniform books, each having a weight W and...Ch. 4.4 - Determine the reactions at the pin A and the...Ch. 4.4 - If rope BC will fail when the tension becomes 50...Ch. 4.4 - Prob. 17PCh. 4.4 - Prob. 18PCh. 4.4 - The cantilever footing is used to support a wall...Ch. 4.4 - Prob. 20PCh. 4.4 - A boy stands out at the end of the diving board,...Ch. 4.4 - Prob. 22PCh. 4.4 - Prob. 23PCh. 4.4 - Prob. 24PCh. 4.4 - Prob. 25PCh. 4.4 - The man attempts to pull the four wheeler up the...Ch. 4.6 - Draw the free-body diagram of each object.Ch. 4.6 - In each case, write the moment equations about the...Ch. 4.6 - Prob. 7FPCh. 4.6 - Prob. 8FPCh. 4.6 - The rod is supported by smooth journal bearings at...Ch. 4.6 - Determine the support reactions at the smooth...Ch. 4.6 - Determine the force developed in the short link...Ch. 4.6 - Determine the components of reaction that the...Ch. 4.6 - The uniform load has a mass of 600 kg and is...Ch. 4.6 - Due to an unequal distribution of fuel in the wing...Ch. 4.6 - Determine the components of reaction at the fixed...Ch. 4.6 - The 50-lb mulching machine has a center of gravity...Ch. 4.6 - Prob. 30PCh. 4.6 - The uniform concrete slab has a mass of 2400 kg....Ch. 4.6 - Prob. 32PCh. 4.6 - Determine the tension in each cable and the...Ch. 4.6 - The bent rod is supported at A, B, and C by smooth...Ch. 4.6 - Prob. 35PCh. 4.6 - The bar AB is supported by two smooth collars. At...Ch. 4.6 - The rod has a weight of 6 lb/ft. If it is...Ch. 4.6 - The sign has a mass of 100 kg with center of mass...Ch. 4.6 - Both pulleys cite fixed to the shaft and as the...Ch. 4.6 - Both pulleys are fixed to the shaft and as the...Ch. 4.6 - Prob. 41PCh. 4.8 - Determine the friction force at the surface of...Ch. 4.8 - Determine the couple moment M needed to cause...Ch. 4.8 - Prob. 6PPCh. 4.8 - Prob. 7PPCh. 4.8 - Prob. 13FPCh. 4.8 - Determine the minimum force P to prevent the 30-kg...Ch. 4.8 - Determine the maximum force P that can be applied...Ch. 4.8 - Prob. 16FPCh. 4.8 - Prob. 17FPCh. 4.8 - Prob. 18FPCh. 4.8 - Prob. 19FPCh. 4.8 - If the coefficient of static friction at all...Ch. 4.8 - Prob. 21FPCh. 4.8 - Prob. 42PCh. 4.8 - The tractor exerts a towing force T = 400 lb....Ch. 4.8 - The mine car and its contents have a total mass of...Ch. 4.8 - The winch on the truck is used to hoist the...Ch. 4.8 - Prob. 46PCh. 4.8 - The automobile has a mass of 2 Mg and center of...Ch. 4.8 - Prob. 48PCh. 4.8 - Prob. 49PCh. 4.8 - Prob. 50PCh. 4.8 - Determine the angle at which the applied force P...Ch. 4.8 - Prob. 52PCh. 4.8 - The 180-lb man climbs up the ladder and stops at...Ch. 4.8 - The 180-lb man climbs up the ladder and stops at...Ch. 4.8 - The spool of wire having a weight of 300 lb rests...Ch. 4.8 - The spool of wire having a weight of 300 lb rests...Ch. 4.8 - The ring has a mass of 0.5 kg and is resting on...Ch. 4.8 - Determine the smallest force P that must be...Ch. 4.8 - The man having a weight of 200 lb pushes...Ch. 4.8 - The uniform hoop of weight W is subjected to the...Ch. 4.8 - Prob. 61PCh. 4.8 - Prob. 62PCh. 4.8 - Prob. 63PCh. 4.8 - The coefficient of static Friction between the...Ch. 4 - If the roller at B can sustain a maximum load of 3...Ch. 4 - Determine the reactions at the supports A and B...Ch. 4 - Determine the normal reaction at the roller A and...Ch. 4 - Determine the horizontal and vertical components...Ch. 4 - Determine the x, y, z components of reaction at...Ch. 4 - Prob. 6RPCh. 4 - Prob. 7RPCh. 4 - The uniform 60-kg crate C rests uniformly on a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Member AB is supported by a cable BC and at A by a square rod which fits loosely through the square hole at the end joint of the member as shown. Determine the components of reaction at A and the tension in the cable needed to hold the 800-lb cylinder in equilibrium.arrow_forward3-2. The members of a truss are pin connected at joint O. Determine the magnitude of F, and its angle for equilibrium. Set F - 6 KN. 5 kN 70 30 7 KN Probs. 3-1/2arrow_forward4-32. Determine the force P of Fig. P4-32 that will maintain equilibrium. 400lb P4-32arrow_forward
- 27- O A) -2/7 B) -3/7 C) -4/7 D) -5/7 O E) -6/7arrow_forwardMember AB is supported by a cable BC and at A by a square rod which fits loosely through the square hole in the collar fixed to the member as shown. Determine the components of reaction at A and the tension in the cable needed to hold the rod in equilibrium. A) 300+A(y)+(3/7)T(BC)=0 3 m B) 400+A(y)+(5/7)T(BC)=0 6 m 400 N C C) 500+A(y)+(4/7)T(BC)=0 D) 300 - A(y)+(2/7)T(BC)=0 300 N x 2 m E) 400+A(y) - (3/7)T(BC)=0 F: Applied force=F F: Reaction force at A=F(A);components are A(x), A(y), A(z) T : Tension force in cable BC=T(BC) ignore weight of the member AB. Which following one is true?arrow_forwardThe stiff-leg derrick is supported by a ball-and-socket joint at D and two. cables BA and BC. The cables are attached to a smooth collar ring at B. which allows the rotation of the derrick about the z axis. If the derrick supports a crate having a mass of 300 kg, determine the tension in the cables and the x, y and z components of the reaction at D. 10m 3m 3 m 2m-arrow_forward
- Q3: The 500-1b cylinder is supported by three chains as shown. Determine the force in each chain for equilibrium. Z 135⁰ 90° 1 ft 41359 B 18 ft 500 lb yarrow_forwardThe boom AB is held in equilibrium by a ball-and-socket joint A and a pulley and cord system as shown. Determine the x, y, z components of reaction at A if F={−2200k}lb Determine the tension in cable DEC.arrow_forwardBoth pulleys are fixed to the shaft and as the shaft turns with constant angular velocity(still equilibrium), the power of pulley A is transmitted to pulley B. Determine the horizontal tension (force T)in the belt on pulley B and the x, y, z components of reaction at the journal bearing C and thrust bearing D if ?= 0°. The bearings are in proper alignment and exert only force reactions on the shaftarrow_forward
- 1. allows free rotation about y-axis and prevents all other displacements and rotations. The cylinder at D has a weight of 400 N. At E it is subjected to a force F = {50i + 50j – 200k} N. Determine the components of reaction at A and the tension in cable BC needed for equilibrium. Member ACD is supported by cable BC and a support at A as shown. The support at A only 0.5 m 1 m D 3 m Farrow_forwardDetermine the horizontal and vertical components of reaction at pin A and the tension at cable AB. 2 m D F 30° 3 kN 2 m G 4 kN 2 m 2 m Harrow_forward•5-21. Determine the horizontal and vertical components of reaction at the pin A and the tension developed in cable BC used to support the steel frame. 60 kN -1m 1m 30KN m 3marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License