Let y 1 ( t ) = t 3 and y 2 ( t ) = | t 3 | . Are y 1 and y 2 linearly independent on the following intervals? a . [ 0 , ∞ ) b . ( − ∞ , 0 ] c . ( − ∞ , ∞ ) d .Compute the Wronskian W [ y 1 , y 2 ] ( t ) on the interval ( − ∞ , ∞ ) .
Let y 1 ( t ) = t 3 and y 2 ( t ) = | t 3 | . Are y 1 and y 2 linearly independent on the following intervals? a . [ 0 , ∞ ) b . ( − ∞ , 0 ] c . ( − ∞ , ∞ ) d .Compute the Wronskian W [ y 1 , y 2 ] ( t ) on the interval ( − ∞ , ∞ ) .
Solution Summary: The author explains that the functions y_1 and
a) Find the scalars p, q, r, s, k1, and k2.
b) Is there a different linearly independent eigenvector associated to either k1 or k2? If yes,find it. If no, briefly explain.
Plz no chatgpt answer Plz
Will upvote
1/ Solve the following:
1 x +
X + cos(3X)
-75
-1
2
2
(5+1) e
5² + 5 + 1
3 L
-1
1
5² (5²+1)
1
5(5-5)
Chapter 4 Solutions
Fundamentals of Differential Equations and Boundary Value Problems
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.