
Fundamentals of Differential Equations and Boundary Value Problems
7th Edition
ISBN: 9780321977106
Author: Nagle, R. Kent
Publisher: Pearson Education, Limited
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4.5, Problem 46E
To determine
To show:
The boundary value problem has solution if and only if
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Can you show me a step by step explanation please.
2. A tank with a capacity of 650 gal. originally contains 200 gal of water with 100 lb. of salt in
solution. Water containing 1 lb. of salt per gallon is entering at a rate of 4 gal/min, and the
mixture is allowed to flow out of the tank at a rate of 3 gal/min.
a. Find the amount of salt in the tank at any time prior to the instant when the tank
begins to overflow (650 gallons).
b. Find the concentration (in pounds per gallon) of salt in the tank when the tank hits
400 gallons.
D.E. for mixture problems:
dv
dt=11-12
dA
A(t)
dt
- Suppose that you have the differential equation:
dy
= (y - 2) (y+3)
dx
a. What are the equilibrium solutions for the differential equation?
b. Where is the differential equation increasing or decreasing? Show how you know.
Showing them on the drawing is not enough.
c. Where are the changes in concavity for the differential equation? Show how you
know. Showing them on the drawing is not enough.
d. Consider the slope field for the differential equation. Draw solution curves given the
following initial conditions:
i. y(0) = -5
ii. y(0) = -1
iii. y(0) = 2
Chapter 4 Solutions
Fundamentals of Differential Equations and Boundary Value Problems
Ch. 4.1 - Verify that for b=0 and Fext(t)=0, equation (3)...Ch. 4.1 - If Fext(t)=0, equation (3) becomes my+by+ky=0. For...Ch. 4.1 - Show that if Fext(t)=0, m=1, k=9, and b=6, then...Ch. 4.1 - Prob. 4ECh. 4.1 - Verify that the exponentially damped sinusoid...Ch. 4.1 - An external force F(t)=2cos2t is applied to a...Ch. 4.1 - In Problems 79, find a synchronous solution of the...Ch. 4.1 - In Problems 79, find a synchronous solution of the...Ch. 4.1 - In Problems 79, find a synchronous solution of the...Ch. 4.1 - Undamped oscillators that are driven at resonance...
Ch. 4.2 - In Problems 1-12, find a general solution to the...Ch. 4.2 - In Problems 1-12, find a general solution to the...Ch. 4.2 - In Problems 1-12, find a general solution to the...Ch. 4.2 - In Problems 1-12, find a general solution to the...Ch. 4.2 - In Problems 1-12, find a general solution to the...Ch. 4.2 - In Problems 1-12, find a general solution to the...Ch. 4.2 - In Problems 1-12, find a general solution to the...Ch. 4.2 - In Problems 1-12, find a general solution to the...Ch. 4.2 - In Problems 1-12, find a general solution to the...Ch. 4.2 - In Problems 1-12, find a general solution to the...Ch. 4.2 - In Problems 1-12, find a general solution to the...Ch. 4.2 - In Problems 1-12, find a general solution to the...Ch. 4.2 - In Problems 13-20, solve the given initial value...Ch. 4.2 - In Problems 13-20, solve the given initial value...Ch. 4.2 - In Problems 13-20, solve the given initial value...Ch. 4.2 - In Problems 13-20, solve the given initial value...Ch. 4.2 - In Problems 13-20, solve the given initial value...Ch. 4.2 - In Problems 13-20, solve the given initial value...Ch. 4.2 - In Problems 13-20, solve the given initial value...Ch. 4.2 - Prob. 20ECh. 4.2 - Prob. 21ECh. 4.2 - Prob. 22ECh. 4.2 - In Problems 22-25, use the method described in...Ch. 4.2 - Prob. 24ECh. 4.2 - In Problems 22-25, use the method described in...Ch. 4.2 - 26.Boundary Value Problems. When the values of a...Ch. 4.2 - In Problems 27 32, use Definition 1 to determine...Ch. 4.2 - In Problems 2732, use Definition 1 to determine...Ch. 4.2 - Prob. 29ECh. 4.2 - Prob. 30ECh. 4.2 - In Problems 2732, use Definition 1 to determine...Ch. 4.2 - Prob. 32ECh. 4.2 - Prob. 33ECh. 4.2 - Wronskian. For any two differentiable functions y1...Ch. 4.2 - Prob. 35ECh. 4.2 - Prob. 36ECh. 4.2 - In Problems 3741, find three linearly independent...Ch. 4.2 - Prob. 38ECh. 4.2 - In Problems 3741, find three linearly independent...Ch. 4.2 - In Problems 3741, find three linearly independent...Ch. 4.2 - Prob. 41ECh. 4.2 - Prob. 42ECh. 4.2 - Prob. 43ECh. 4.2 - Solve the initial value problem: y2yy+2y=0;...Ch. 4.2 - Prob. 45ECh. 4.2 - Prob. 46ECh. 4.3 - In Problems 1-8, the auxiliary equation for the...Ch. 4.3 - In Problems 1-8, the auxiliary equation for the...Ch. 4.3 - Prob. 3ECh. 4.3 - Prob. 4ECh. 4.3 - In Problems 1-8, the auxiliary equation for the...Ch. 4.3 - In Problems 1-8, the auxiliary equation for the...Ch. 4.3 - In Problems 1-8, the auxiliary equation for the...Ch. 4.3 - In Problems 1-8, the auxiliary equation for the...Ch. 4.3 - In Problems 9-20, find a general solution....Ch. 4.3 - In Problems 9-20, find a general solution....Ch. 4.3 - In Problems 9-20, find a general solution....Ch. 4.3 - In Problems 9-20, find a general solution. u+7u=0Ch. 4.3 - In Problems 9-20, find a general solution....Ch. 4.3 - In Problems 9-20, find a general solution....Ch. 4.3 - In Problems 9-20, find a general solution....Ch. 4.3 - In Problems 9-20, find a general solution....Ch. 4.3 - In Problems 9-20, find a general solution. yy+7y=0Ch. 4.3 - In Problems 9-20, find a general solution....Ch. 4.3 - In Problems 9-20, find a general solution....Ch. 4.3 - In Problems 9-20, find a general solution. yy+2y=0Ch. 4.3 - In Problems 21-27, solve the given initial value...Ch. 4.3 - In Problems 21-27, solve the initial value...Ch. 4.3 - In Problems 21-27, solve the given initial value...Ch. 4.3 - In Problems 21-27, solve the given initial value...Ch. 4.3 - In Problems 21-27, solve the given initial value...Ch. 4.3 - Prob. 26ECh. 4.3 - In Problems 21-27, solve the given initial value...Ch. 4.3 - To see the effect of changing the parameters b in...Ch. 4.3 - Find a general solution to the following...Ch. 4.3 - Prob. 30ECh. 4.3 - Using the mass-spring analogy, predict the...Ch. 4.3 - Vibrating Spring without Damping. A vibrating...Ch. 4.3 - Vibrating Spring with Damping. Using the model for...Ch. 4.3 - Prob. 34ECh. 4.3 - Swinging Door. The motion of a swinging door with...Ch. 4.3 - Prob. 36ECh. 4.3 - Prob. 37ECh. 4.3 - Prove the sum of angles formula for the sine...Ch. 4.4 - In Problem 1-8, decide whether or not the method...Ch. 4.4 - In Problem 1-8, decide whether or not the method...Ch. 4.4 - In Problem 1-8, decide whether or not the method...Ch. 4.4 - In Problem 1-8, decide whether or not the method...Ch. 4.4 - In Problem 1-8, decide whether or not the method...Ch. 4.4 - Prob. 6ECh. 4.4 - In Problem 1-8, decide whether or not the method...Ch. 4.4 - Prob. 8ECh. 4.4 - In Problems 9-26, find a particular solution to...Ch. 4.4 - In Problems 9-26, find a particular solution to...Ch. 4.4 - In Problem 9-26, find a particular solution to the...Ch. 4.4 - Prob. 12ECh. 4.4 - In Problems 9-26, find a particular solution to...Ch. 4.4 - In Problems 9-26, find a particular solution to...Ch. 4.4 - In Problems 9-26, find a particular solution to...Ch. 4.4 - Prob. 16ECh. 4.4 - In Problems 9-26, find a particular solution to...Ch. 4.4 - Prob. 18ECh. 4.4 - In Problems 9-26, find a particular solution to...Ch. 4.4 - Prob. 20ECh. 4.4 - In Problems 9-26, find a particular solution to...Ch. 4.4 - In Problems 9-26, find a particular solution to...Ch. 4.4 - In Problems 9-26, find a particular solution to...Ch. 4.4 - In Problems 9-26, find a particular solution to...Ch. 4.4 - In Problems 9-26, find a particular solution to...Ch. 4.4 - In Problems 9-26, find a particular solution to...Ch. 4.4 - In Problems 2732, determine the form of a...Ch. 4.4 - In Problems 27 32, determine the form of a...Ch. 4.4 - In Problems 2732, determine the form of a...Ch. 4.4 - In Problems 2732, determine the form of a...Ch. 4.4 - Prob. 31ECh. 4.4 - In Problems 2732, determine the form of a...Ch. 4.4 - Prob. 33ECh. 4.4 - In Problems 3336, use the method of undetermined...Ch. 4.4 - Prob. 35ECh. 4.4 - In Problems 3336, use the method of undetermined...Ch. 4.5 - Given that y1(t)=cost is a solution to yy+y=sint...Ch. 4.5 - Given that y1(t)=(1/4)sin2t is a solution to...Ch. 4.5 - In Problems 3-8, a nonhomogeneous equation and a...Ch. 4.5 - In Problem 3-8, a nonhomogeneous equation and a...Ch. 4.5 - In Problem 3-8, a nonhomogeneous equation and a...Ch. 4.5 - In Problems 3-8, a nonhomogeneous equation and a...Ch. 4.5 - In Problems 3-8, a nonhomogeneous equation and a...Ch. 4.5 - In Problems 3-8, a nonhomogeneous equation and a...Ch. 4.5 - Prob. 9ECh. 4.5 - Prob. 10ECh. 4.5 - Prob. 11ECh. 4.5 - In Problems 9-16 decide whether the method of...Ch. 4.5 - In Problems 9-16 decide whether the method of...Ch. 4.5 - Prob. 14ECh. 4.5 - Prob. 15ECh. 4.5 - Prob. 16ECh. 4.5 - Prob. 17ECh. 4.5 - In Problem 17-22, find a general solution to the...Ch. 4.5 - In Problems 17-22, find a general solution to the...Ch. 4.5 - In Problems 17-22, find a general solution to the...Ch. 4.5 - Prob. 21ECh. 4.5 - Prob. 22ECh. 4.5 - Prob. 23ECh. 4.5 - Prob. 24ECh. 4.5 - In Problems 2330, find the solution to the initial...Ch. 4.5 - In Problems 2330, find the solution to the initial...Ch. 4.5 - Prob. 27ECh. 4.5 - In Problems 2330, find the solution to the initial...Ch. 4.5 - Prob. 29ECh. 4.5 - Prob. 30ECh. 4.5 - Prob. 31ECh. 4.5 - In Problems 3136, determine the form of a...Ch. 4.5 - In Problems 3136, determine the form of a...Ch. 4.5 - Prob. 34ECh. 4.5 - In Problems 3136, determine the form of a...Ch. 4.5 - In Problems 31 36, determine the form of a...Ch. 4.5 - In Problems 3740, find a particular solution to...Ch. 4.5 - Prob. 38ECh. 4.5 - Prob. 39ECh. 4.5 - Prob. 40ECh. 4.5 - Discontinuous Forcing Term. In certain physical...Ch. 4.5 - Forced Vibrations. As discussed in Section 4.1, a...Ch. 4.5 - A massspring system is driven by a sinusoidal...Ch. 4.5 - Prob. 44ECh. 4.5 - Speed Bumps. Often bumps like the one depicted in...Ch. 4.5 - Prob. 46ECh. 4.5 - Prob. 47ECh. 4.5 - Prob. 48ECh. 4.6 - In Problems 18, find a general solution to the...Ch. 4.6 - In Problems 18, find a general solution to the...Ch. 4.6 - Prob. 3ECh. 4.6 - In Problems 18, find a general solution to the...Ch. 4.6 - In Problems 18, find a general solution to the...Ch. 4.6 - In Problems 18, find a general solution to the...Ch. 4.6 - In Problems 18, find a general solution to the...Ch. 4.6 - In Problems 18, find a general solution to the...Ch. 4.6 - Prob. 9ECh. 4.6 - In Problems 9 and 10, find a particular solution...Ch. 4.6 - In Problems 1118, find a general solution to the...Ch. 4.6 - In Problems 1118, find a general solution to the...Ch. 4.6 - Prob. 13ECh. 4.6 - In Problems 11-18, find a general solution to the...Ch. 4.6 - In Problems 11-18, find a general solution to the...Ch. 4.6 - In Problems 11-18, find a general solution to the...Ch. 4.6 - In Problems 11-18, find a general solution to the...Ch. 4.6 - In Problems 11-18, find a general solution to the...Ch. 4.6 - Prob. 19ECh. 4.6 - Use the method of variation of parameters to show...Ch. 4.6 - Prob. 21ECh. 4.6 - Prob. 22ECh. 4.6 - Prob. 23ECh. 4.6 - In Problems 22 through 25, use variation of...Ch. 4.6 - In Problems 22 through 25, use variation of...Ch. 4.7 - In Problems 1 through 4, use Theorem 5 to discuss...Ch. 4.7 - In Problems 1 through 4, use Theorem 5 to discuss...Ch. 4.7 - In Problems 1 through 4, use Theorem 5 to discuss...Ch. 4.7 - In Problems 1 through 4, use Theorem 5 to discuss...Ch. 4.7 - In Problems 5 through 8, determine whether Theorem...Ch. 4.7 - In Problems 5 through 8, determine whether Theorem...Ch. 4.7 - In Problems 5 through 8, determine whether Theorem...Ch. 4.7 - In Problems 5 through 8, determine whether Theorem...Ch. 4.7 - In Problems 9 through 14, find a general solution...Ch. 4.7 - Prob. 10ECh. 4.7 - Prob. 11ECh. 4.7 - Prob. 12ECh. 4.7 - In Problems 9 through 14, find a general solution...Ch. 4.7 - Prob. 14ECh. 4.7 - Prob. 15ECh. 4.7 - In Problems 15 through 18, find a general solution...Ch. 4.7 - In Problems 15 through 18, find a general solution...Ch. 4.7 - In Problems 15 through 18, find a general solution...Ch. 4.7 - Prob. 19ECh. 4.7 - Prob. 20ECh. 4.7 - Prob. 21ECh. 4.7 - In Problems 21 and 22, devise a modification of...Ch. 4.7 - Prob. 23ECh. 4.7 - Prob. 24ECh. 4.7 - Prob. 25ECh. 4.7 - Let y1(t)=t3 and y2(t)=|t3|. Are y1 and y2...Ch. 4.7 - Prob. 27ECh. 4.7 - Let y1(t)=t2 and y2(t)=2t|t|. Are y1 and y2...Ch. 4.7 - Prob. 29ECh. 4.7 - Prob. 30ECh. 4.7 - Prob. 31ECh. 4.7 - By completing the following steps, prove that the...Ch. 4.7 - Prob. 33ECh. 4.7 - Given that 1+t, 1+2t, and 1+3t2 are solutions to...Ch. 4.7 - Verify that the given functions y1 and y2 are...Ch. 4.7 - In Problems 37 through 39, find general solutions...Ch. 4.7 - Prob. 38ECh. 4.7 - In Problems 37 through 39, find general solutions...Ch. 4.7 - Prob. 40ECh. 4.7 - In Problems 41 through 44, a differential equation...Ch. 4.7 - In Problems 41 through 44, a differential equation...Ch. 4.7 - In Problems 41 through 44, a differential equation...Ch. 4.7 - In Problems 41 through 44, a differential equation...Ch. 4.7 - Find a particular solution to the nonhomogeneous...Ch. 4.7 - Find a particular solution to the nonhomogeneous...Ch. 4.7 - In quantum mechanics, the study of the Schrodinger...Ch. 4.7 - Prob. 48ECh. 4.7 - Prob. 49ECh. 4.7 - Prob. 50ECh. 4.7 - Prob. 51ECh. 4.7 - Prob. 52ECh. 4.8 - Show that if y(t) satisfies yty=0, then y(t)...Ch. 4.8 - Prob. 2ECh. 4.8 - Prob. 3ECh. 4.8 - Prob. 4ECh. 4.8 - a. Use the energy integral lemma to derive the...Ch. 4.8 - Prob. 6ECh. 4.8 - Prob. 7ECh. 4.8 - Use the energy integral Lemma to show that...Ch. 4.8 - Prob. 9ECh. 4.8 - Prob. 10ECh. 4.8 - Prob. 11ECh. 4.8 - Prob. 12ECh. 4.8 - Prob. 13ECh. 4.8 - Prob. 14ECh. 4.8 - Use the mass-spring oscillator analogy to decide...Ch. 4.8 - Prob. 16ECh. 4.8 - Prob. 17ECh. 4.9 - All problems refer to the mass-spring...Ch. 4.9 - Prob. 2ECh. 4.9 - All problems refer to the mass-spring...Ch. 4.9 - All problems refer to the mass-spring...Ch. 4.9 - Prob. 5ECh. 4.9 - Prob. 6ECh. 4.9 - Prob. 7ECh. 4.9 - Prob. 8ECh. 4.9 - A 2kg mass is attached to a spring with stiffness...Ch. 4.9 - A 1/4-kg mass is attached to a spring with...Ch. 4.9 - Prob. 11ECh. 4.9 - A 1/4-kg mass is attached to a spring with...Ch. 4.9 - Prob. 13ECh. 4.9 - For an underdamped system, verify that as b0 the...Ch. 4.9 - How can one deduce the value of the damping...Ch. 4.9 - Prob. 16ECh. 4.9 - Consider the equation for free mechanical...Ch. 4.9 - Consider the equation for free mechanical...Ch. 4.10 - Sketch the frequency response curve (13) for the...Ch. 4.10 - Prob. 2ECh. 4.10 - Determine the equation of the motion for an...Ch. 4.10 - Prob. 4ECh. 4.10 - An undamped system is governed by...Ch. 4.10 - Derive the formula for yp(t) given in 21...Ch. 4.10 - Shock absorbers in automobiles and aircraft can be...Ch. 4.10 - The response of an overdamped system to a constant...Ch. 4.10 - An 8-kg mass is attached to a spring hanging from...Ch. 4.10 - Show that the period of the simple harmonic motion...Ch. 4.10 - A mass weighing 8 lb is attached to a spring...Ch. 4.10 - A 2-kg mass is attached to a spring hanging from...Ch. 4.10 - A mass weighing 32lb is attached to a spring...Ch. 4.10 - An 8-kg mass is attached to a spring hanging from...Ch. 4.10 - An 8-kg mass is attached to a spring hanging from...Ch. 4.RP - In Problems 1-28, find a general solution to the...Ch. 4.RP - Prob. 2RPCh. 4.RP - Prob. 3RPCh. 4.RP - Prob. 4RPCh. 4.RP - Prob. 5RPCh. 4.RP - Prob. 6RPCh. 4.RP - Prob. 7RPCh. 4.RP - Prob. 8RPCh. 4.RP - In Problems 1 -28, find the general solution to...Ch. 4.RP - Prob. 10RPCh. 4.RP - Prob. 11RPCh. 4.RP - Prob. 12RPCh. 4.RP - Prob. 13RPCh. 4.RP - Prob. 14RPCh. 4.RP - Prob. 15RPCh. 4.RP - Prob. 16RPCh. 4.RP - Prob. 17RPCh. 4.RP - Prob. 18RPCh. 4.RP - Prob. 19RPCh. 4.RP - Prob. 20RPCh. 4.RP - Prob. 21RPCh. 4.RP - Prob. 22RPCh. 4.RP - Prob. 23RPCh. 4.RP - Prob. 24RPCh. 4.RP - Prob. 25RPCh. 4.RP - In Problems 1-28, find a general solution to the...Ch. 4.RP - Prob. 27RPCh. 4.RP - Prob. 28RPCh. 4.RP - Prob. 29RPCh. 4.RP - Prob. 30RPCh. 4.RP - Prob. 31RPCh. 4.RP - Prob. 32RPCh. 4.RP - Prob. 33RPCh. 4.RP - Prob. 34RPCh. 4.RP - Prob. 35RPCh. 4.RP - Prob. 36RPCh. 4.RP - Use the mass-spring oscillator analogy to decide...Ch. 4.RP - A 3kg mass is attached to a spring with stiffness...Ch. 4.RP - A 32lb weight is attached to a vertical spring,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 5. Suppose that a mass of 5 stretches a spring 10. The mass is acted on by an external force of F(t)=10 sin () and moves in a medium that gives a damping coefficient of ½. If the mass is set in motion with an initial velocity of 3 and is stretched initially to a length of 5. (I purposefully removed the units- don't worry about them. Assume no conversions are needed.) a) Find the equation for the displacement of the spring mass at time t. b) Write the equation for the displacement of the spring mass in phase-mode form. c) Characterize the damping of the spring mass system as overdamped, underdamped or critically damped. Explain how you know. D.E. for Spring Mass Systems k m* g = kLo y" +—y' + — —±y = —±F(t), y(0) = yo, y'(0) = vo m 2 A₁ = √c₁² + C₂² Q = tan-1arrow_forward4. Given the following information determine the appropriate trial solution to find yp. Do not solve the differential equation. Do not find the constants. a) (D-4)2(D+ 2)y = 4e-2x b) (D+ 1)(D² + 10D +34)y = 2e-5x cos 3xarrow_forward9.7 Given the equations 0.5x₁-x2=-9.5 1.02x₁ - 2x2 = -18.8 (a) Solve graphically. (b) Compute the determinant. (c) On the basis of (a) and (b), what would you expect regarding the system's condition? (d) Solve by the elimination of unknowns. (e) Solve again, but with a modified slightly to 0.52. Interpret your results.arrow_forward
- 3. Determine the appropriate annihilator for the given F(x). a) F(x) = 5 cos 2x b) F(x)=9x2e3xarrow_forward12.42 The steady-state distribution of temperature on a heated plate can be modeled by the Laplace equation, 0= FT T + 200°C 25°C 25°C T22 0°C T₁ T21 200°C FIGURE P12.42 75°C 75°C 00°C If the plate is represented by a series of nodes (Fig. P12.42), cen- tered finite-divided differences can be substituted for the second derivatives, which results in a system of linear algebraic equations. Use the Gauss-Seidel method to solve for the temperatures of the nodes in Fig. P12.42.arrow_forward9.22 Develop, debug, and test a program in either a high-level language or a macro language of your choice to solve a system of equations with Gauss-Jordan elimination without partial pivoting. Base the program on the pseudocode from Fig. 9.10. Test the program using the same system as in Prob. 9.18. Compute the total number of flops in your algorithm to verify Eq. 9.37. FIGURE 9.10 Pseudocode to implement the Gauss-Jordan algorithm with- out partial pivoting. SUB GaussJordan(aug, m, n, x) DOFOR k = 1, m d = aug(k, k) DOFOR j = 1, n aug(k, j) = aug(k, j)/d END DO DOFOR 1 = 1, m IF 1 % K THEN d = aug(i, k) DOFOR j = k, n aug(1, j) END DO aug(1, j) - d*aug(k, j) END IF END DO END DO DOFOR k = 1, m x(k) = aug(k, n) END DO END GaussJordanarrow_forward
- 11.9 Recall from Prob. 10.8, that the following system of equations is designed to determine concentrations (the e's in g/m³) in a series of coupled reactors as a function of amount of mass input to each reactor (the right-hand sides are in g/day): 15c3cc33300 -3c18c26c3 = 1200 -4c₁₂+12c3 = 2400 Solve this problem with the Gauss-Seidel method to & = 5%.arrow_forward9.8 Given the equations 10x+2x2-x3 = 27 -3x-6x2+2x3 = -61.5 x1 + x2 + 5x3 = -21.5 (a) Solve by naive Gauss elimination. Show all steps of the compu- tation. (b) Substitute your results into the original equations to check your answers.arrow_forwardTangent planes Find an equation of the plane tangent to the following surfaces at the given points (two planes and two equations).arrow_forward
- Vectors u and v are shown on the graph.Part A: Write u and v in component form. Show your work. Part B: Find u + v. Show your work.Part C: Find 5u − 2v. Show your work.arrow_forwardVectors u = 6(cos 60°i + sin60°j), v = 4(cos 315°i + sin315°j), and w = −12(cos 330°i + sin330°j) are given. Use exact values when evaluating sine and cosine.Part A: Convert the vectors to component form and find −7(u • v). Show every step of your work.Part B: Convert the vectors to component form and use the dot product to determine if u and w are parallel, orthogonal, or neither. Justify your answer.arrow_forwardSuppose that one factory inputs its goods from two different plants, A and B, with different costs, 3 and 7 each respective. And suppose the price function in the market is decided as p(x, y) = 100 - x - y where x and y are the demand functions and 0 < x, y. Then as x = y= the factory can attain the maximum profit,arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education

Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education

Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON


Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON

Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,

Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY