College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.6, Problem 4.8QQ
Consider the two situations shown in Figure 4.30, in which there is no acceleration. In both cases the men pull with a force of magnitude F. Is the reading on the scale in part (i) of the figure (a) greater than, (b) less than, or (c) equal to the reading in part (ii)?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Two horses on opposite banks of a canal pull a barge moving parallel the banks by
means of two horizontal ropes. The tensions in these ropes are F1 = 79 kN and F2 =
239 kN, while the angle between them is 52 degrees. Find the resultant pull on the
barge in kN. Write numerical value only and 2 decimal places.
8₂
F₂
1-24
Ө
An adventurous archaeologist crosses between two
rock cliffs by slowly going hand-over-hand along a rope
stretched between the cliffs. He stops to rest at the
middle of the rope (Figure 1). The rope will break if the
tension in it exceeds 3.00×104 N, and our hero's mass
is 89.5 kg.
You may want to review (Page).
For help with math skills, you may want to review:
Vector Components
Figure
1 of 1
▼
If the angle between the rope and the horizontal is = 10.7 °, find the tension in the rope
Express your answer in newtons.
► View Available Hint(s)
VG ΑΣΦ
Submit
Part B
What is the smallest value the angle can have if the rope is not to break?
Express your answer in degrees.
► View Available Hint(s)
ΑΣΦ
N
?
What is the direction of the resultant force?
Chapter 4 Solutions
College Physics
Ch. 4.2 - Which of the following statements are true? (a) An...Ch. 4.2 - Which has greater value, a newton of gold on Earth...Ch. 4.2 - Respond to each statement, true or false: (a) No...Ch. 4.2 - A small sports car collides head-on with a massive...Ch. 4.4 - If you press a book flat against a vertical wall...Ch. 4.4 - A crate is sitting in the center of a flatbed...Ch. 4.4 - Suppose your friend is sitting on a sled and asks...Ch. 4.6 - Consider the two situations shown in Figure 4.30,...Ch. 4.6 - For the woman being pulled forward on the toboggan...Ch. 4 - A passenger sitting in the rear of a bus claims...
Ch. 4 - A space explorer is moving through space far from...Ch. 4 - (a) If gold were sold by weight, would you rather...Ch. 4 - If you push on a heavy box that is at rest, you...Ch. 4 - A ball is held in a persons hand. (a) Identify all...Ch. 4 - A weight lifter stands on a bathroom scale. (a) As...Ch. 4 - (a) What force causes an automobile to move? (b) A...Ch. 4 - If only one force acts on an object, can it be in...Ch. 4 - In the: motion picture It Happened One Night...Ch. 4 - Analyze the motion of a rock dropped in water in...Ch. 4 - Identify the action-reaction pairs in the...Ch. 4 - Draw a free-body diagram for each of the following...Ch. 4 - In a tug-of-war between two athletes, each pulls...Ch. 4 - Suppose you are driving a car at a high speed. Why...Ch. 4 - As a block slides down a frictionless incline,...Ch. 4 - A crate remains stationary after it has been...Ch. 4 - In Figure 4.4, a locomotive has broken through the...Ch. 4 - If an object is in equilibrium, which of the...Ch. 4 - A truck loaded with sand accelerates along a...Ch. 4 - A large crate of mass m is placed on the back of a...Ch. 4 - Which of the following statements are true? (a) An...Ch. 4 - A woman is standing on the Earth. In terms of...Ch. 4 - An exoplanet has twice the mass and half the...Ch. 4 - Choose the best answer. A car traveling at...Ch. 4 - The heaviest invertebrate is the giant squid,...Ch. 4 - A football punter accelerates a football from rest...Ch. 4 - A 6.0-kg object undergoes an acceleration of 2.0...Ch. 4 - One or more external forces are exerted on each...Ch. 4 - A bag of sugar weighs 5.00 lb on Earth. What would...Ch. 4 - A freight train has a mass of 1.5 107 kg. If the...Ch. 4 - Four forces act on an object, given by A = 40.0 N...Ch. 4 - Consider a solid metal sphere (S) a few...Ch. 4 - As a fish jumps vertically out of the water,...Ch. 4 - A 5.0-g bullet leaves the muzzle of a rifle with a...Ch. 4 - A boat moves through the water with two forces...Ch. 4 - Two forces are applied to a car in an effort to...Ch. 4 - A 970.-kg car starts from rest on a horizontal...Ch. 4 - An object of mass m is dropped from the roof of a...Ch. 4 - After falling from rest from a height of 30.0 m, a...Ch. 4 - The force exerted by the wind on the sails of a...Ch. 4 - A force of 30.0 N is applied in the positive...Ch. 4 - What would be the acceleration of gravity at the...Ch. 4 - Calculate the magnitude of the normal force on a...Ch. 4 - A horizontal force of 95.0 N is applied to a...Ch. 4 - A car of mass 875 kg is traveling 30.0 m/s when...Ch. 4 - A student of mass 60.0 kg, starting at rest,...Ch. 4 - A 1.00 103-N crate is being pushed across a level...Ch. 4 - A block of mass m = 5.8 kg is pulled up a = 25...Ch. 4 - A rocket takes off from Earths surface,...Ch. 4 - A man exerts a horizontal force of 125 N on a...Ch. 4 - A horse is harnessed to a sled having a mass of...Ch. 4 - A block of mass 55.0 kg rests on a slope having an...Ch. 4 - A dockworker loading crates on a ship finds that a...Ch. 4 - Suppose the coefficient of static friction between...Ch. 4 - The coefficient of static friction between the...Ch. 4 - Two identical strings making an angle of = 30.0...Ch. 4 - A 75-kg man standing on a scale in an elevator...Ch. 4 - A crate of mass m = 32 kg rides on the bed of a...Ch. 4 - (a) Find the tension in each cable supporting the...Ch. 4 - The distance between two telephone poles is 50.0...Ch. 4 - (a) An elevator of mass m moving upward has two...Ch. 4 - A certain orthodontist uses a wire brace to align...Ch. 4 - A 150-N bird feeder is supported by three cables...Ch. 4 - The leg and cast in Figure P4.40 weigh 220 N (w1)....Ch. 4 - A 276-kg glider is being pulled by a 1 950-kg jet...Ch. 4 - A crate of mass 45.0 kg is being transported on...Ch. 4 - Consider a large truck carrying a heavy load, such...Ch. 4 - A student decides to move a box of books into her...Ch. 4 - An object falling under the pull of gravity is...Ch. 4 - A 3.00-kg block starts from rest at the top of a...Ch. 4 - To meet a U.S. Postal Service requirement,...Ch. 4 - A block of mass 12.0 kg is sliding at an initial...Ch. 4 - The person in Figure P4.49 weighs 170. lb. Each...Ch. 4 - A car is traveling at 50.0 km/h on a flat highway....Ch. 4 - A 5.0-kg bucket of water is raised from a well by...Ch. 4 - A hockey puck struck by a hockey stick is given an...Ch. 4 - A setup similar to the one shown in Figure P4.53...Ch. 4 - An Atwoods machine (Fig. 4.38) consists of two...Ch. 4 - A block of mass m1 = 16.0 kg is on a frictionless...Ch. 4 - Two blocks each of mass m are fastened to the top...Ch. 4 - Two blocks of masses m and 2m are held in...Ch. 4 - The systems shown in Figure P4.58 are in...Ch. 4 - Assume the three blocks portrayed in Figure P4.59...Ch. 4 - Two packing crates of masses 10.0 kg and 5.00 kg...Ch. 4 - A 1.00 103 car is pulling a 300.-kg trailer....Ch. 4 - Two blocks of masses m1 and m2 (m1 m2) are placed...Ch. 4 - In Figure P4.63, the light, taut, unstretchable...Ch. 4 - An object with mass m1 = 5.00 kg rests on a...Ch. 4 - Objects with masses m1 = 10.0 kg and m2 = 5.00 kg...Ch. 4 - Two objects with masses of 3.00 kg and 5.00 kg are...Ch. 4 - In Figure P4.64, m1 = 10. kg and m2 = 4.0 kg. The...Ch. 4 - A block of mass 3m is placed on a frictionless...Ch. 4 - A 15.0-lb block rests on a horizontal floor, (a)...Ch. 4 - Objects of masses m1 = 4.00 kg and m2 = 9.00 kg...Ch. 4 - Two blocks each of mass m = 3.50 kg are fastened...Ch. 4 - As a protest against the umpires calls, a baseball...Ch. 4 - Three objects are connected on a table as shown in...Ch. 4 - (a) What is the minimum force of friction required...Ch. 4 - (a) What is the resultant force exerted by the two...Ch. 4 - A woman at an airport is towing her 20.0-kg...Ch. 4 - A boy coasts down a hill on a sled, reaching a...Ch. 4 - Three objects are connected by light strings as...Ch. 4 - A box rests on the back of a truck. The...Ch. 4 - A high diver of mass 70.0 kg steps off a board...Ch. 4 - A frictionless plane is 10.0 m long and inclined...Ch. 4 - Measuring coefficients of friction A coin is...Ch. 4 - A 2.00-kg aluminum block and a 6.00-kg copper...Ch. 4 - On an airplanes takeoff, the combined action of...Ch. 4 - Two boxes of fruit on a frictionless horizontal...Ch. 4 - A sled weighing 60.0 N is pulled horizontally...Ch. 4 - A car accelerates down a hill (Fig. P4.87), going...Ch. 4 - An inventive child wants to reach an apple in a...Ch. 4 - The parachute on a race car of weight 8 820 N...Ch. 4 - A fire helicopter carries a 620-kg bucket of water...Ch. 4 - The board sandwiched between two other boards in...Ch. 4 - A 72-kg man stands on a spring scale in an...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The temperature of the Universe at recombination was about 3000 K. Use Wien’s law to calculate the peak wavelen...
Loose Leaf For Explorations: Introduction To Astronomy
5.106 A 70-kg person rides in a 30-kg cart moving at 12 m/s at the top of a hill that is in the shape of an arc...
University Physics (14th Edition)
Whether two metal foil leaves an electroscope get opposite charge when the electroscope is charged.
Physics of Everyday Phenomena
2. Which of the following is the best example of the use of a referent? _
a. A red bicycle
b. Big as a dump tru...
Physical Science
Choose the best answer to each of the following. Explain your reasoning. If Earth were twice as far as it actua...
The Cosmic Perspective Fundamentals (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A bicep muscle shown in Fig. P2.3 can apply a force F measured in Newtons (N) as a function of the elbow angle ϕ, measured in degrees as described by the quadratic equation F(ϕ) = 6ϕ − 0.04ϕ2. For a bicep force of F = 200 N, solve the equation for ϕ by each of the following methods: factoring, completing the square, and the quadratic formula. Using your solution from part (a), determine the elbow angle ϕ where the force exerted by the bicep is maximum. In addition, calculate the maximum force Fmax. Plot F versus ϕ and clearly indicate the maximum force on the graph. Also clearly label the x-intercepts on the graph.arrow_forwardA child pulls on a wagon of mass 47 kg at an angle 33 degrees above the horizontal with a force of F. If the wagon accelerates at 3.7 m/s2 horizontally, what is the magnitude of the force F (in unit of N)? Assume there is coefficient of friction is 0.33, and please use g = 10 m/s2 to simplify computation.arrow_forwardAs you will see in a later chapter, forces are vector quantities, and the total force on an object is the vector sum of all forces acting on it. In the figure below, a force ₁ of magnitude 6.80 units acts on a box at the origin in a direction 0 = 29.0° above the positive x-axis. A second force F2 of magnitude 5.00 units acts on the box in the direction of the positive y-axis. Find graphically the magnitude and direction (in degrees counterclockwise from the +x-axis) of the resultant force ₁ + F2. magnitude direction F₂ F₁ i units ° counterclockwise from the +x-axisarrow_forward
- Two horses on opposite banks of a canal pull a barge moving parallel the banks by means of two horizontal ropes. The tensions in these ropes are F1 = 185 kN and F2 231 kN, while the angle between them is 58 degrees. Find the 02 in degrees. Write numerical value only and 2 decimal places. = to 8₂ Өarrow_forwardA force F1 of magnitude 6.30 units acts on an object at the origin in a direction θ = 47.0° above the positive x-axis. (See the figure below.) A second force F2 of magnitude 5.00 units acts on the object in the direction of the positive y-axis. Find graphically the magnitude and direction of the resultant force F1 + F2.arrow_forwardA particle of mass 1.0 kg is subjected to a force Fiz = -3.0N and a second force of F2 = 14.0N.Calculate the magnitude of the acceleration, in m/s, of the particle. Use two significant digits please.arrow_forward
- A force F1 of magnitude 5.20 units acts on an object at the origin in a direction theta = 48.0 above the positive x-axis. A second force F2 of magnitude 5.00 units acts on the object in the direction of the positive y-axis. Find the graphically the magnitude and direction of the resultant force F1+ F2.arrow_forwardP1-12 Consider a 72 kg high-jumper. Calculate the magnitude of the force, in newtons, the jumper must exert on the ground to produce an upward acceleration 4.00 times the acceleration due to gravity.arrow_forwardThe diagram shows the two forces with magnitudes F1 and F2 acting on a body. The first force is in the positive x direction, while the second makes an angle θ with the negative x direction, as shown.If the magnitudes are related by F1 = 2.25F2, and θ = 48.5 degrees, then what is the angle φ that the acceleration vector makes with the x-axis, in degrees? (How do I approach this problem?)arrow_forward
- As you will see in a later chapter, forces are vector quantities, and the total force on an object is the vector sum of all forces acting on it. In the figure below, a forceF1of magnitude 6.40 units acts on a crate at the origin in a direction θ = 28.0° above the positive x-axis. A second force F2 of magnitude 5.00 units acts on the crate in the direction of the positive y-axis. Find graphically the magnitude and direction (in degrees counterclockwise from the +x-axis) of the resultant force F1 + F2. magnitude units direction° counterclockwise from the +x-axisarrow_forwardA 570 N police officer is supported by three cables(T1, T2 and T3), of which T1 and T2 are making angles 01 = 54° and 02 = 19° as shown in Figure. Here T3 = 570 N, calculate the tensions T, and T2 01 02 T1 T2 T3 to search TOSHIBAarrow_forwardIn the figure below, a force F, of magnitude 5.50 units acts on an object at the origin in a direction 0 = 32.0° above the positive 1 x-axis. A second force F, of magnitude 5.00 units acts on the object in the direction of the positive y-axis. Find graphically the 12 magnitude and direction (in degrees counterclockwise from the +x-axis) of the resultant force F, + F,. 2: magnitude units direction ° counterclockwise from the +x-axis 2,arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY