College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 9CQ
In the: motion picture It Happened One Night (Columbia Pictures, 1934), Clark Gable is standing inside a stationary bus in front of Claudette Colbert, who is seated. The bus suddenly starts moving forward and Clark falls into Claudette’s lap. Why did this happen?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
In the motion picture It Happened One Night (Columbia Pictures,1934), Clark Gable is standing inside a stationary bus infront of Claudette Colbert, who is seated. The bus suddenlystarts moving forward and Clark falls into Claudette’s lap. Whydid this happen?
A space explorer is moving through space far from any planet or star. He notices a large rock, taken as a specimen from an alien planet, floating around the cabin of the ship. Should he push it gently, or should he kick it toward the storage compartment? Explain.
Jimmy's heart accelerates 2.4 x 102kg of blood from 0.15 m/s to 0.32 m/s over an elapsed time of 0.12s
every time he sees Janine. Find the magnitude of the acceleration of the blood and use that value to
calculate the net force needed to cause that acceleration.
Chapter 4 Solutions
College Physics
Ch. 4.2 - Which of the following statements are true? (a) An...Ch. 4.2 - Which has greater value, a newton of gold on Earth...Ch. 4.2 - Respond to each statement, true or false: (a) No...Ch. 4.2 - A small sports car collides head-on with a massive...Ch. 4.4 - If you press a book flat against a vertical wall...Ch. 4.4 - A crate is sitting in the center of a flatbed...Ch. 4.4 - Suppose your friend is sitting on a sled and asks...Ch. 4.6 - Consider the two situations shown in Figure 4.30,...Ch. 4.6 - For the woman being pulled forward on the toboggan...Ch. 4 - A passenger sitting in the rear of a bus claims...
Ch. 4 - A space explorer is moving through space far from...Ch. 4 - (a) If gold were sold by weight, would you rather...Ch. 4 - If you push on a heavy box that is at rest, you...Ch. 4 - A ball is held in a persons hand. (a) Identify all...Ch. 4 - A weight lifter stands on a bathroom scale. (a) As...Ch. 4 - (a) What force causes an automobile to move? (b) A...Ch. 4 - If only one force acts on an object, can it be in...Ch. 4 - In the: motion picture It Happened One Night...Ch. 4 - Analyze the motion of a rock dropped in water in...Ch. 4 - Identify the action-reaction pairs in the...Ch. 4 - Draw a free-body diagram for each of the following...Ch. 4 - In a tug-of-war between two athletes, each pulls...Ch. 4 - Suppose you are driving a car at a high speed. Why...Ch. 4 - As a block slides down a frictionless incline,...Ch. 4 - A crate remains stationary after it has been...Ch. 4 - In Figure 4.4, a locomotive has broken through the...Ch. 4 - If an object is in equilibrium, which of the...Ch. 4 - A truck loaded with sand accelerates along a...Ch. 4 - A large crate of mass m is placed on the back of a...Ch. 4 - Which of the following statements are true? (a) An...Ch. 4 - A woman is standing on the Earth. In terms of...Ch. 4 - An exoplanet has twice the mass and half the...Ch. 4 - Choose the best answer. A car traveling at...Ch. 4 - The heaviest invertebrate is the giant squid,...Ch. 4 - A football punter accelerates a football from rest...Ch. 4 - A 6.0-kg object undergoes an acceleration of 2.0...Ch. 4 - One or more external forces are exerted on each...Ch. 4 - A bag of sugar weighs 5.00 lb on Earth. What would...Ch. 4 - A freight train has a mass of 1.5 107 kg. If the...Ch. 4 - Four forces act on an object, given by A = 40.0 N...Ch. 4 - Consider a solid metal sphere (S) a few...Ch. 4 - As a fish jumps vertically out of the water,...Ch. 4 - A 5.0-g bullet leaves the muzzle of a rifle with a...Ch. 4 - A boat moves through the water with two forces...Ch. 4 - Two forces are applied to a car in an effort to...Ch. 4 - A 970.-kg car starts from rest on a horizontal...Ch. 4 - An object of mass m is dropped from the roof of a...Ch. 4 - After falling from rest from a height of 30.0 m, a...Ch. 4 - The force exerted by the wind on the sails of a...Ch. 4 - A force of 30.0 N is applied in the positive...Ch. 4 - What would be the acceleration of gravity at the...Ch. 4 - Calculate the magnitude of the normal force on a...Ch. 4 - A horizontal force of 95.0 N is applied to a...Ch. 4 - A car of mass 875 kg is traveling 30.0 m/s when...Ch. 4 - A student of mass 60.0 kg, starting at rest,...Ch. 4 - A 1.00 103-N crate is being pushed across a level...Ch. 4 - A block of mass m = 5.8 kg is pulled up a = 25...Ch. 4 - A rocket takes off from Earths surface,...Ch. 4 - A man exerts a horizontal force of 125 N on a...Ch. 4 - A horse is harnessed to a sled having a mass of...Ch. 4 - A block of mass 55.0 kg rests on a slope having an...Ch. 4 - A dockworker loading crates on a ship finds that a...Ch. 4 - Suppose the coefficient of static friction between...Ch. 4 - The coefficient of static friction between the...Ch. 4 - Two identical strings making an angle of = 30.0...Ch. 4 - A 75-kg man standing on a scale in an elevator...Ch. 4 - A crate of mass m = 32 kg rides on the bed of a...Ch. 4 - (a) Find the tension in each cable supporting the...Ch. 4 - The distance between two telephone poles is 50.0...Ch. 4 - (a) An elevator of mass m moving upward has two...Ch. 4 - A certain orthodontist uses a wire brace to align...Ch. 4 - A 150-N bird feeder is supported by three cables...Ch. 4 - The leg and cast in Figure P4.40 weigh 220 N (w1)....Ch. 4 - A 276-kg glider is being pulled by a 1 950-kg jet...Ch. 4 - A crate of mass 45.0 kg is being transported on...Ch. 4 - Consider a large truck carrying a heavy load, such...Ch. 4 - A student decides to move a box of books into her...Ch. 4 - An object falling under the pull of gravity is...Ch. 4 - A 3.00-kg block starts from rest at the top of a...Ch. 4 - To meet a U.S. Postal Service requirement,...Ch. 4 - A block of mass 12.0 kg is sliding at an initial...Ch. 4 - The person in Figure P4.49 weighs 170. lb. Each...Ch. 4 - A car is traveling at 50.0 km/h on a flat highway....Ch. 4 - A 5.0-kg bucket of water is raised from a well by...Ch. 4 - A hockey puck struck by a hockey stick is given an...Ch. 4 - A setup similar to the one shown in Figure P4.53...Ch. 4 - An Atwoods machine (Fig. 4.38) consists of two...Ch. 4 - A block of mass m1 = 16.0 kg is on a frictionless...Ch. 4 - Two blocks each of mass m are fastened to the top...Ch. 4 - Two blocks of masses m and 2m are held in...Ch. 4 - The systems shown in Figure P4.58 are in...Ch. 4 - Assume the three blocks portrayed in Figure P4.59...Ch. 4 - Two packing crates of masses 10.0 kg and 5.00 kg...Ch. 4 - A 1.00 103 car is pulling a 300.-kg trailer....Ch. 4 - Two blocks of masses m1 and m2 (m1 m2) are placed...Ch. 4 - In Figure P4.63, the light, taut, unstretchable...Ch. 4 - An object with mass m1 = 5.00 kg rests on a...Ch. 4 - Objects with masses m1 = 10.0 kg and m2 = 5.00 kg...Ch. 4 - Two objects with masses of 3.00 kg and 5.00 kg are...Ch. 4 - In Figure P4.64, m1 = 10. kg and m2 = 4.0 kg. The...Ch. 4 - A block of mass 3m is placed on a frictionless...Ch. 4 - A 15.0-lb block rests on a horizontal floor, (a)...Ch. 4 - Objects of masses m1 = 4.00 kg and m2 = 9.00 kg...Ch. 4 - Two blocks each of mass m = 3.50 kg are fastened...Ch. 4 - As a protest against the umpires calls, a baseball...Ch. 4 - Three objects are connected on a table as shown in...Ch. 4 - (a) What is the minimum force of friction required...Ch. 4 - (a) What is the resultant force exerted by the two...Ch. 4 - A woman at an airport is towing her 20.0-kg...Ch. 4 - A boy coasts down a hill on a sled, reaching a...Ch. 4 - Three objects are connected by light strings as...Ch. 4 - A box rests on the back of a truck. The...Ch. 4 - A high diver of mass 70.0 kg steps off a board...Ch. 4 - A frictionless plane is 10.0 m long and inclined...Ch. 4 - Measuring coefficients of friction A coin is...Ch. 4 - A 2.00-kg aluminum block and a 6.00-kg copper...Ch. 4 - On an airplanes takeoff, the combined action of...Ch. 4 - Two boxes of fruit on a frictionless horizontal...Ch. 4 - A sled weighing 60.0 N is pulled horizontally...Ch. 4 - A car accelerates down a hill (Fig. P4.87), going...Ch. 4 - An inventive child wants to reach an apple in a...Ch. 4 - The parachute on a race car of weight 8 820 N...Ch. 4 - A fire helicopter carries a 620-kg bucket of water...Ch. 4 - The board sandwiched between two other boards in...Ch. 4 - A 72-kg man stands on a spring scale in an...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The net force between the thymine and adenine.
Physics: Principles with Applications
1. What are the temperatures for freezing water on the Celsius and the Fahrenheit scales, respectively? For boi...
Conceptual Physical Science (6th Edition)
56. Global Positioning System. Learn more about the global positioning system and its uses. Write a short repo...
The Cosmic Perspective (8th Edition)
The validity of a scientific law.
Physical Universe
Why are scientists interested in the possibility of life beyond Earth?
Life in the Universe (4th Edition)
An aluminum calorimeter with a mass of 100 g contains 250 g of water. The calorimeter and water are in thermal ...
Physics for Scientists and Engineers, Technology Update (No access codes included)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- One end of a rope is tied to a 11 kg hanging weight. The rope goes over a pulley and the other end is tied to a 11.7 kg block on flat ground and pulls the block horizontally towards the pulley. The coefficient of kinetic friction is .2. The block is sliding away from the pulley at 3.0 m/s (the weight is being pulled upwards). What is the magnitude of the acceleration of the block in meters per second squared?arrow_forwardA spaceship is midway between the earth and the moon when its engines fail. What is its acceleration? Assume that the distance from the center of the earth to the center of the moon is 3.8 x 108 m and the mass of the moon is 7.38 x 1022 kg. arrow_forwardA 72 kg person is standing inside an elevator. The elevator is moving upward at 2.61 m/s and is increasing speed at a rate of 1.48 m/s^2. What is the normal force that is acting on the person?arrow_forward
- The 4-Mg bus A is traveling to the right at 30 m/s. Meanwhile a 1-Mg car B is traveling at 20 m/s to the left. If vehicles crash and become entangled, determine the distance the vehicles will slide before they stop. The coefficient of kinetic friction between vehicles' tire and the road is μι-0.7. VA = 30 m/s Vg = 20 m/s Barrow_forwardA swimmer in a river is chatting with a friend who would the swimmer need to swim in order to remain in place relative to the person on shore? on the river bank. If the river current is flowing at 0.339 mph to the east, with what velocity relative to the water O 0.678 mph to the west O 0.339 mph to the north O 0.339 mph to the east O 0.339 mph to the westarrow_forwardA person is using a rope to lower a 0.5 kg bucket into a well with a constant speed of 2.0 m/s. What is the magnitude of the force exerted by the rope on the bucket?arrow_forward
- You are riding a luxury bus. In front of you is a cup of tea resting on the seat-back tray. Which of the following events may lead to spilled tea in your lap? The bus a. remains at rest, b. moves at constant velocity, c. speeds up or d. slows down. Dont worry about other circumstances such as a person knocking your cup over. (More than one choice may be correct.) Explain your answers.arrow_forwardAn astronaut out on a spacewalk to construct a new section of the International Space Station walks with a constant velocity of 2.00 m/s on a flat sheet of metal placed on a flat, frictionless, horizontal honeycomb surface linking the two parts of the station. The mass of the astronaut is 75.0 kg, and the mass of the sheet of metal is 245 kg. a. What is the velocity of the metal sheet relative to the honeycomb surface? b. What is the speed of the astronaut relative to the honeycomb surface?arrow_forwardA large crate of mass m is placed on the flatbed of a truck but not tied down. As the truck accelerates forward with acceleration a, the crate remains at rest relative to the truck. What force causes the crate to accelerate? (a) the normal force (b) the gravitational force (c) the friction force (d) the ma force exerted by the crate (e) No force is required.arrow_forward
- A bag of cement weighing 325 N hangs in equilibrium from three wires as suggested in Figure P4.23. Two of the wires make angles 1 = 60.0 and 2 = 40.0 with the horizontal. Assuming the system is in equilibrium, find the tensions T1, T2, and T3 in the wires. Figure P4.23 Problems 23 and 24.arrow_forwardIn Example 2.6, we considered a simple model for a rocket launched from the surface of the Earth. A better expression for the rockets position measured from the center of the Earth is given by y(t)=(R3/2+3g2Rt)2/3j where R is the radius of the Earth (6.38 106 m) and g is the constant acceleration of an object in free fall near the Earths surface (9.81 m/s2). a. Derive expressions for vy(t) and ay(t). b. Plot y(t), vy(t), and ay(t). (A spreadsheet program would be helpful.) c. When will the rocket be at y=4R? d. What are vy and ay when y=4R?arrow_forwardThe starship Enterprise has its tractor beam locked onto some valuable debris and is trying to pull it toward the ship. A Klingon battle cruiser and a Romulan warbird are also trying to recover the item by pulling the debris with their tractor beams as shown in Figure P5.25. a. Given the following magnitudes of the tractor beam forces, find the net force experienced by the debris: FEnt = 7.59 106 N, FRom = 2.53 106 N, and FKling = 8.97 105 N. b. If the debris has a mass of 2549 kg, what is the net acceleration of the debris? FIGURE P5.25arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY