
Concept explainers
(a) An elevator of mass m moving upward has two forces acting on it: the upward force of tension in the cable and the downward force due to gravity. When the elevator is accelerating upward, which is greater, T or w? (b) When the elevator is moving at a constant velocity upward, which is greater, T or w? (c) When the elevator is moving upward, but the acceleration is downward, which is greater, T or w? (d) Let the elevator have a mass of 1 500 kg and an upward acceleration of 2.5 m/s2. Find T. Is your answer consistent with the answer to part (a)? (e) The elevator of part (d) now moves with a constant upward velocity of 10 m/s. Find T. Is your answer consistent with your answer to part (b)? (f) Having initially moved upward with a constant velocity, the elevator begins to accelerate downward at 1.50 m/s2. Find T. Is your answer consistent with your answer to part (c)?
(a)

The tension on the cable.
Answer to Problem 37P
Tension (T) on the cable should be greater than the weight.
Explanation of Solution
Given Info: Mass of the block is m.
Weight of the elevator is,
- g is the acceleration due to gravity.
- m is the mass of the block.
Conclusion:
The force of gravity acts downwards. For the elevator to move upwards,
(b)

The tension on the cable.
Answer to Problem 37P
Tension (T) on the cable is equal to the weight.
Explanation of Solution
According to Newton’s second law, force is equal to the product of mass and acceleration.
Force is expressed as,
- a is the acceleration.
- m is the mass of the block.
Conclusion:
Acceleration is the rate of change of velocity. Since, velocity is constant, the acceleration is zero. Therefore, the total force is zero. As a result, the tension equals the weight of the elevator.
(c)

The tension on the cable.
Answer to Problem 37P
Tension (T) on the cable should be lesser than the weight.
Explanation of Solution
Given Info: Mass of the block is m.
Weight of the elevator is,
- g is the acceleration due to gravity.
- m is the mass of the block.
Conclusion:
The force of gravity acts downwards. For the elevator to move downwards,
(d)

The tension on the cable.
Answer to Problem 37P
Tension (T) on the cable should be greater than the weight.
Explanation of Solution
Tension on the cable is,
- g is the acceleration due to gravity.
- m is the mass of the block.
- a is the acceleration.
Weight of the elevator is,
- g is the acceleration due to gravity.
- m is the mass of the block.
Substitute 1200 kg for m,
Substitute 1200 kg for m and
Conclusion:
Tension on the cable is 14760 N. The weight of the elevator is 11760 N. Therefore,
T > W.
(e)

The tension on the cable.
Answer to Problem 37P
Tension (T) on the cable is equal to the weight.
Explanation of Solution
Tension on the cable is,
- g is the acceleration due to gravity.
- m is the mass of the block.
- a is the acceleration.
Acceleration is the rate of change of velocity. Since, velocity is constant, the acceleration is zero
Weight of the elevator is,
- g is the acceleration due to gravity.
- m is the mass of the block.
Substitute 1200 kg for m,
Substitute 1200 kg for m and
Conclusion:
Therefore, T = W. It is consistent with (b).
(f)

The tension on the cable.
Answer to Problem 37P
Tension (T) on the cable should be lesser than the weight.
Explanation of Solution
Tension on the cable is,
- g is the acceleration due to gravity.
- m is the mass of the block.
- a is the acceleration.
Weight of the elevator is,
- g is the acceleration due to gravity.
- m is the mass of the block.
Substitute 1200 kg for m,
Substitute 1200 kg for m and
Conclusion:
Therefore,
Want to see more full solutions like this?
Chapter 4 Solutions
College Physics
Additional Science Textbook Solutions
Biology: Life on Earth with Physiology (11th Edition)
Chemistry: Atoms First
MARINE BIOLOGY
General, Organic, and Biological Chemistry - 4th edition
Human Anatomy & Physiology (2nd Edition)
- simple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forward
- A long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forward
- Explain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forward
- For each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning





