
Concept explainers
(a)
To graph: The function.
(a)

Explanation of Solution
Given information: Ecology: In the early 1900s, the deer population of the Kaibab Plateau in Arizona experienced a rapid increase because hunters had reduced the number of natural predators. The food supply was not great enough to support the increased population, eventually causing the population to decline. The deer population for the period 1905 to 1930 can be modeled by
Calculation:
The required graph is as follows:
(b)
To calculate: The population in 1905 using the model.
(b)

Answer to Problem 37E
4000 Deer
Explanation of Solution
Given information: Ecology: In the early 1900s, the deer population of the Kaibab Plateau in Arizona experienced a rapid increase because hunters had reduced the number of natural predators. The food supply was not great enough to support the increased population, eventually causing the population to decline. The deer population for the period 1905 to 1930 can be modeled by
Calculation:
1905 coincides with
Thus, population is 4000 deer.
(c)
To find: The population in 1920 using the model.
(c)

Answer to Problem 37E
67,281 Deer
Explanation of Solution
Given information: Ecology: In the early 1900s, the deer population of the Kaibab Plateau in Arizona experienced a rapid increase because hunters had reduced the number of natural predators. The food supply was not great enough to support the increased population, eventually causing the population to decline. The deer population for the period 1905 to 1930 can be modeled by
Calculation:
1920 coincides with 15 years after 1905.
This would estimate about 67,281 deer.
(d)
To find: When did the deer population become zero, according to this model.
(d)

Answer to Problem 37E
1930
Explanation of Solution
Given information: Ecology: In the early 1900s, the deer population of the Kaibab Plateau in Arizona experienced a rapid increase because hunters had reduced the number of natural predators. The food supply was not great enough to support the increased population, eventually causing the population to decline. The deer population for the period 1905 to 1930 can be modeled by
Calculation:
Chapter 4 Solutions
Advanced Mathematical Concepts: Precalculus with Applications, Student Edition
Additional Math Textbook Solutions
Elementary Statistics (13th Edition)
Algebra and Trigonometry (6th Edition)
University Calculus: Early Transcendentals (4th Edition)
Intro Stats, Books a la Carte Edition (5th Edition)
Thinking Mathematically (6th Edition)
Basic Business Statistics, Student Value Edition
- (14 points) Let S = {(x, y, z) | z = e−(x²+y²), x² + y² ≤ 1}. The surface is the graph of ze(+2) sitting over the unit disk.arrow_forward6. Solve the system of differential equations using Laplace Transforms: x(t) = 3x₁ (t) + 4x2(t) x(t) = -4x₁(t) + 3x2(t) x₁(0) = 1,x2(0) = 0arrow_forward3. Determine the Laplace Transform for the following functions. Show all of your work: 1-t, 0 ≤t<3 a. e(t) = t2, 3≤t<5 4, t≥ 5 b. f(t) = f(tt)e-3(-) cos 4τ drarrow_forward
- 4. Find the inverse Laplace Transform Show all of your work: a. F(s) = = 2s-3 (s²-10s+61)(5-3) se-2s b. G(s) = (s+2)²arrow_forward1. Consider the differential equation, show all of your work: dy =(y2)(y+1) dx a. Determine the equilibrium solutions for the differential equation. b. Where is the differential equation increasing or decreasing? c. Where are the changes in concavity? d. Suppose that y(0)=0, what is the value of y as t goes to infinity?arrow_forward2. Suppose a LC circuit has the following differential equation: q'+4q=6etcos 4t, q(0) = 1 a. Find the function for q(t), use any method that we have studied in the course. b. What is the transient and the steady-state of the circuit?arrow_forward
- 5. Use variation of parameters to find the general solution to the differential equation: y" - 6y' + 9y=e3x Inxarrow_forwardLet the region R be the area enclosed by the function f(x) = ln (x) + 2 and g(x) = x. Write an integral in terms of x and also an integral in terms of y that would represent the area of the region R. If necessary, round limit values to the nearest thousandth. 5 4 3 2 1 y x 1 2 3 4arrow_forward(28 points) Define T: [0,1] × [−,0] → R3 by T(y, 0) = (cos 0, y, sin 0). Let S be the half-cylinder surface traced out by T. (a) (4 points) Calculate the normal field for S determined by T.arrow_forward
- (14 points) Let S = {(x, y, z) | z = e−(x²+y²), x² + y² ≤ 1}. The surface is the graph of ze(+2) sitting over the unit disk. = (a) (4 points) What is the boundary OS? Explain briefly. (b) (4 points) Let F(x, y, z) = (e³+2 - 2y, xe³±² + y, e²+y). Calculate the curl V × F.arrow_forward(6 points) Let S be the surface z = 1 − x² - y², x² + y² ≤1. The boundary OS of S is the unit circle x² + y² = 1. Let F(x, y, z) = (x², y², z²). Use the Stokes' Theorem to calculate the line integral Hint: First calculate V x F. Jos F F.ds.arrow_forward(28 points) Define T: [0,1] × [−,0] → R3 by T(y, 0) = (cos 0, y, sin 0). Let S be the half-cylinder surface traced out by T. (a) (4 points) Calculate the normal field for S determined by T.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





