Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 44, Problem 46P
(a)
To determine
Find the age of the rock.
(b)
To determine
Find the ratio of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two rocks are found that have different ratios R' of 238U to 206Pb: R' = 0.76 and 3.1. What are the ages of the two rocks? Did they likely have the same origin?
Potassium-Argon dating is a common method of determining the age of rocks based on the time they were last liquified, and thus we can determine the age of a surface by examining the ratio of the parent K40 to the decay product Ar40. This works because argon is a gas, which is free to bubble out of liquified rock whenever the rock is hot enough to no longer be in it's solid state (think of magma covering a surface). This means that just after the rock solidifies, there should be effectively no Ar40 remaining and that any Ar40 that we do find in the rock at the time of the collection of the sample must be due to radioactive decay.
With all of this in mind, if we find that a rock sample has 31 Ar40 atoms for every 1 K40 atom, and the half-life of K40 is 1.3 billion years, how much time has passed in years since that rock was geologically active (aka it was last liquified)?
Ch31 P34. A rare decay mode has been
observed in which 222 Ra emits a
14C nucleus. The decay equation is
222 Ra AX+¹4C and you have identified unknown
nuclide, AX, in the problem of Section 31.4.
You'll need to use that answer in this problem.
(a) Find the mass change from the parent
nuclide to the daughter nuclides.
Enter your answer to 7 SigFigs. The mass
change answers in nuclear decays must be
correct to 6 places past the decimal point. Units
are not required for this problem.
u.
(b) Find the energy emitted in the decay in units
of MeV. The mass of 222Ra is 222.015353 u.
Enter your answer to 3sigFigs in MeV. Units are
not required in this answer.
Mev.
Check
Chapter 44 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 44.1 - Prob. 44.1QQCh. 44.5 - Prob. 44.3QQCh. 44.5 - Which of the following is the correct daughter...Ch. 44 - Prob. 1OQCh. 44 - Prob. 2OQCh. 44 - Prob. 3OQCh. 44 - Prob. 4OQCh. 44 - Prob. 5OQCh. 44 - Prob. 6OQCh. 44 - Prob. 7OQ
Ch. 44 - Prob. 8OQCh. 44 - Prob. 9OQCh. 44 - Prob. 10OQCh. 44 - Prob. 11OQCh. 44 - Prob. 12OQCh. 44 - Prob. 13OQCh. 44 - Prob. 1CQCh. 44 - Prob. 2CQCh. 44 - Prob. 3CQCh. 44 - Prob. 4CQCh. 44 - Prob. 5CQCh. 44 - Prob. 6CQCh. 44 - Prob. 7CQCh. 44 - Prob. 8CQCh. 44 - Prob. 9CQCh. 44 - Prob. 10CQCh. 44 - Prob. 11CQCh. 44 - Prob. 12CQCh. 44 - Prob. 13CQCh. 44 - Prob. 14CQCh. 44 - Prob. 15CQCh. 44 - Prob. 16CQCh. 44 - Prob. 17CQCh. 44 - Prob. 1PCh. 44 - Prob. 2PCh. 44 - Prob. 3PCh. 44 - Prob. 4PCh. 44 - Prob. 5PCh. 44 - Prob. 6PCh. 44 - Prob. 7PCh. 44 - Prob. 8PCh. 44 - Prob. 9PCh. 44 - Prob. 10PCh. 44 - Prob. 11PCh. 44 - Prob. 12PCh. 44 - Prob. 13PCh. 44 - Prob. 14PCh. 44 - Prob. 15PCh. 44 - Prob. 16PCh. 44 - Prob. 17PCh. 44 - Prob. 18PCh. 44 - Prob. 19PCh. 44 - Prob. 20PCh. 44 - Prob. 21PCh. 44 - Prob. 22PCh. 44 - Prob. 23PCh. 44 - Prob. 24PCh. 44 - Prob. 25PCh. 44 - Prob. 26PCh. 44 - Prob. 27PCh. 44 - Prob. 28PCh. 44 - Prob. 29PCh. 44 - Prob. 31PCh. 44 - Prob. 32PCh. 44 - Prob. 33PCh. 44 - Prob. 34PCh. 44 - Prob. 35PCh. 44 - Prob. 36PCh. 44 - Prob. 37PCh. 44 - Prob. 38PCh. 44 - Prob. 39PCh. 44 - Prob. 40PCh. 44 - Prob. 41PCh. 44 - Prob. 42PCh. 44 - Prob. 43PCh. 44 - Prob. 44PCh. 44 - Prob. 45PCh. 44 - Prob. 46PCh. 44 - Prob. 47PCh. 44 - Prob. 48PCh. 44 - Prob. 49PCh. 44 - Prob. 50PCh. 44 - Prob. 51PCh. 44 - Prob. 52PCh. 44 - Prob. 53PCh. 44 - Prob. 54APCh. 44 - Prob. 55APCh. 44 - Prob. 56APCh. 44 - Prob. 57APCh. 44 - Prob. 58APCh. 44 - Prob. 59APCh. 44 - Prob. 60APCh. 44 - Prob. 61APCh. 44 - Prob. 62APCh. 44 - Prob. 63APCh. 44 - Prob. 64APCh. 44 - Prob. 65APCh. 44 - Prob. 66APCh. 44 - Prob. 67APCh. 44 - Prob. 68APCh. 44 - Prob. 69APCh. 44 - Prob. 70APCh. 44 - Prob. 71APCh. 44 - Prob. 72APCh. 44 - As part of his discovery of the neutron in 1932,...Ch. 44 - Prob. 74APCh. 44 - Prob. 75APCh. 44 - Prob. 76APCh. 44 - Prob. 77CPCh. 44 - Prob. 78CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Derive an approximate relationship between the energy of (decay and halflife using the following data. It may be useful to graph the leg t1/2 against Ea to find some straightline relationship. Table 31.3 Energy and HalfLife for (Decay Nuclide E( (MeV) t1/2 216Ra 9.5 0.18 (s 194Po 7.0 0.7 s 240Cm 6.4 27 d 226Ra 4.91 1600 y 232Th 4.1 1.41010yarrow_forwardIn the following eight problems, write the complete decay equation for the given nuclide in the complete XZAN notation. Refer to the periodic table for values of Z. decay of 40K, a naturally occurring rare isotope of potassium responsible for some of our exposure to background radiation.arrow_forwardIn a 3109 yearold rock that originally contained some 238U, which has a halflife of 4.5109 years, we expect to find some 238U remaining in it. Why are 226Ra, 222Rn, and 210Po also found in such a rock, even though they have much shorter halflives (1600 years, 3.8 days, and 133 days, respectively)?arrow_forward
- In the following eight problems, write the complete decay equation for the given nuclide in the complete XZAN notation. Refer to the periodic table for values of Z. decay of 226Ra, another isotope in the decay series of 238U, FIrst recognized as a new element by the Curies. Poses special problems because its daughter is a radioactive noble gas. In the following four problems, identity the parent nuclide and write the complete decay equation in the XZAN notation. Refer to the periodic table for values of Z.arrow_forwardis the heaviest stable nuclide, and its BEN is low compared with medium-mass nuclides. Calculate BEN for this nucleus and compare it with the approximate value obtained from the graph in Figure 10.7. fission of nuclei with mass numbers greater than that of Fe. are othermic processes.arrow_forwardNo stable nuclides exist that have Z greater than ___. (10.3)arrow_forward
- A piece of charcoal (totally carbon) from an ancient campsite has a mass of 262 grams. It is measured to have an activity of 29 Bq from 14C decay. Use this information to determine the age of the campfire. Your answer is required to be in years. Information: 14C half-life is 5730 years. 1 gram of living carbon has 6.52x1010 atoms of 14Carrow_forwardA radioactive element 235U is present in a Zircon sample with 3500 atoms. It is known that 235U has a half-life of 700 million years. How long would it take to decay to 115 atoms? A 3200.12 million years В 3449.35 million years 3825.00 million years 3500.45 million yearsarrow_forwardNeeds Complete typed solution with 100 % accuracy.arrow_forward
- An ancient artifact is found to contain 240 g of carbon and has an activity of 479 decays/min. Part A Q Search What is the approximate age of the artifact, to the nearest thousand years? (The rate of decay of carbon in living matter is R 16 decays/(g. min).) Express your answer to the nearest thousand years. 15| ΑΣΦ Submit Part B What would its initial activity have been? Ro= Request Answer 15. ΑΣΦ P Pearson W ? ? y Copyright © 2022 Pearson Education Inc. All rights reserved. | Terms of Use | Privacy Policy | Permissions | Contact Us | decays/min Revie 10:02 AM 12/12/2022arrow_forwardA piece of charcoal used for cooking is found at the remains of an ancient campsite. A 1.19 kg sample of carbon from the wood has an activity of 2340 decays per minute. Find the age of the charcoal. Living mate- rial has an activity of 15 decays/minute per gram of carbon present and the half-life of 14C is 5730 y. Answer in units of y.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax