Concept explainers
(a)
The binding energy per nucleon for
(a)
Answer to Problem 15P
The binding energy per nucleon for
Explanation of Solution
Write the equation for binding energy per nucleon.
Here,
Conclusion:
Substitute
Therefore, the binding energy per nucleon for
(b)
The binding energy per nucleon for
(b)
Answer to Problem 15P
The binding energy per nucleon for
Explanation of Solution
Use the previous section equation.
Conclusion:
Substitute
Therefore, the binding energy per nucleon for
(c)
Find the binding energy per nucleon for
(c)
Answer to Problem 15P
The binding energy per nucleon for
Explanation of Solution
Use the previous section equation.
Conclusion:
Substitute
Therefore, the binding energy per nucleon for
(d)
Find the binding energy per nucleon for
(d)
Answer to Problem 15P
The binding energy per nucleon for
Explanation of Solution
Use the previous section equation.
Conclusion:
Substitute
Therefore, the binding energy per nucleon for
Want to see more full solutions like this?
Chapter 44 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- (a) Calculate the energy released in the neutron- Induced fission reaction n+235U92Kr+142Ba+2n , given m(92Kr) = 91.926269 u and m(142Ba)= 141.916361 u. (b) Confirm that the total number of nucleons and total charge are conserved in this reaction.arrow_forwardIn the following eight problems, write the complete decay equation for the given nuclide in the complete XZAN notation. Refer to the periodic table for values of Z. decay of 40K, a naturally occurring rare isotope of potassium responsible for some of our exposure to background radiation.arrow_forward(a) How many 239Pu nuclei must fission to produce a 20.0kT yield, assuming 200 MeV per fission? (b) What is the mass of this much 239Pu?arrow_forward
- (a) Write the decay equation for the decay of 235U. (b) What energy is released in this decay? The mass of the daughter nuclide is 231.036298 u. (c) Assuming the residual nucleus is formed in its ground state, how much energy goes to the particle?arrow_forwardis the heaviest stable nuclide, and its BEN is low compared with medium-mass nuclides. Calculate BEN for this nucleus and compare it with the approximate value obtained from the graph in Figure 10.7. fission of nuclei with mass numbers greater than that of Fe. are othermic processes.arrow_forwardIn the following eight problems, write the complete decay equation for the given nuclide in the complete XZAN notation. Refer to the periodic table for values of Z. decay of 226Ra, another isotope in the decay series of 238U, FIrst recognized as a new element by the Curies. Poses special problems because its daughter is a radioactive noble gas. In the following four problems, identity the parent nuclide and write the complete decay equation in the XZAN notation. Refer to the periodic table for values of Z.arrow_forward
- Derive an approximate relationship between the energy of (decay and halflife using the following data. It may be useful to graph the leg t1/2 against Ea to find some straightline relationship. Table 31.3 Energy and HalfLife for (Decay Nuclide E( (MeV) t1/2 216Ra 9.5 0.18 (s 194Po 7.0 0.7 s 240Cm 6.4 27 d 226Ra 4.91 1600 y 232Th 4.1 1.41010yarrow_forward(a) Calculate the energy released in the a decay of 238U . (b) What fraction of the mass of a single 238U is destroyed in the decay? The mass of 234Th is 234.043593 u. (c) Although the fractional mass loss is large for a single nucleus, it is difficult to observe for an entire macroscopic sample of uranium. Why is this?arrow_forwardIn a 3109 yearold rock that originally contained some 238U, which has a halflife of 4.5109 years, we expect to find some 238U remaining in it. Why are 226Ra, 222Rn, and 210Po also found in such a rock, even though they have much shorter halflives (1600 years, 3.8 days, and 133 days, respectively)?arrow_forward
- (a) Background radiation due to 226Ra averages only 0.01 mSv/y, but it can range upward depending on where a 226Ra in the 80.0kg body of a man who receives a dose of 2.50mSv/y from it, noting that each 226Ra decay emits a 4.80MeV particle. You may person lives. Find the mass of neglect dose due to daughters and assume a constant amount, evenly distributed due to balanced ingestion and handily elimination. (b) Is it surprising that such a small mass could cause a measurable radiation dose? Explain.arrow_forwardSuppose you have a pure radioactive material with a half-life of T1/2. You begin with N0 undecayed nuclei of the material at t = 0. At t=12T1/2, how many of the nuclei have decayed? (a) 14N0 (b) 12N0(C) 34N0 (d) 0.707N0 (e) 0.293N0arrow_forwardIn the following eight problems, write the complete decay equation for the given nuclide in the complete XZAN notation. Refer to the periodic table for values of Z. + decay of 50Mn.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning