Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 44, Problem 63AP

(a)

To determine

Find the number of 91239Pu nuclei at t=0.

(a)

Expert Solution
Check Mark

Answer to Problem 63AP

The number of 91239Pu nuclei at t=0 is 2.52×1024.

Explanation of Solution

Write the equation for number of nuclei,

    N0=massmass per atom                                                     (I)

Conclusion:

Substitute 1.00 kg for mass and (239.05 u)(1.66×1027kg/u) for mass per atom in equation I.

    N0=1.00 kg(239.05 u)(1.66×1027kg/u)=2.52×1024

Therefore, the number of 91239Pu nuclei at t=0 is 2.52×1024.

(b)

To determine

Find the initial activity in the sample.

(b)

Expert Solution
Check Mark

Answer to Problem 63AP

The initial activity in the sample is 2.29×1012 Bq.

Explanation of Solution

Write the equation for decay constant.

    λ=ln2T1/2                                                     (II)

Here, λ is the decay constant and T1/2 is the half-life time.

Write the equation for initial activity.

    R0=λN0                                                     (III)

Here, R0 is the initial activity and N0 is the number of nuclei.

Conclusion:

Substitute 2.412×104 yr for T1/2 in equation II.

    λ=ln2(2.412×104 yr)(3.156×107s/yr)=9.106×1013 s1

Substitute 9.106×1013 s1 for λ and 2.52×1024 for N0 in equation III.

    R0=(9.106×1013 s1)(2.52×1024)=2.29×1012 Bq

Therefore, the initial activity in the sample is 2.29×1012 Bq.

(c)

To determine

Find the time interval does the sample have to be stored.

(c)

Expert Solution
Check Mark

Answer to Problem 63AP

The time interval does the sample have to be stored is 1.07×106 yr.

Explanation of Solution

Write the equation for radioactive decay.

    R=R0eλt                                                    (IV)

Here, R is the decay rate, R0 is the initial decay, λ is the decay constant and t is the time.

Write the equation for decay constant.

    λ=ln2t1/2                                                    (V)

Here, t1/2 is the half life time.

Substitute equation V in IV and rewrite to get time.

    t=1λln(R0R)                                                    (VI)

Conclusion:

Substitute 9.106×1013 s1 for λ, 2.29×1012 Bq for R0 and 0.100 Bq for R in equation VI.

    t=19.106×1013 s1ln(2.29×1012 Bq0.100 Bq)=3.38×1013 s(1 yr3.156×107 s)=1.07×106 yr

Therefore, the time interval does the sample have to be stored is 1.07×106 yr.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]

Chapter 44 Solutions

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term

Ch. 44 - Prob. 8OQCh. 44 - Prob. 9OQCh. 44 - Prob. 10OQCh. 44 - Prob. 11OQCh. 44 - Prob. 12OQCh. 44 - Prob. 13OQCh. 44 - Prob. 1CQCh. 44 - Prob. 2CQCh. 44 - Prob. 3CQCh. 44 - Prob. 4CQCh. 44 - Prob. 5CQCh. 44 - Prob. 6CQCh. 44 - Prob. 7CQCh. 44 - Prob. 8CQCh. 44 - Prob. 9CQCh. 44 - Prob. 10CQCh. 44 - Prob. 11CQCh. 44 - Prob. 12CQCh. 44 - Prob. 13CQCh. 44 - Prob. 14CQCh. 44 - Prob. 15CQCh. 44 - Prob. 16CQCh. 44 - Prob. 17CQCh. 44 - Prob. 1PCh. 44 - Prob. 2PCh. 44 - Prob. 3PCh. 44 - Prob. 4PCh. 44 - Prob. 5PCh. 44 - Prob. 6PCh. 44 - Prob. 7PCh. 44 - Prob. 8PCh. 44 - Prob. 9PCh. 44 - Prob. 10PCh. 44 - Prob. 11PCh. 44 - Prob. 12PCh. 44 - Prob. 13PCh. 44 - Prob. 14PCh. 44 - Prob. 15PCh. 44 - Prob. 16PCh. 44 - Prob. 17PCh. 44 - Prob. 18PCh. 44 - Prob. 19PCh. 44 - Prob. 20PCh. 44 - Prob. 21PCh. 44 - Prob. 22PCh. 44 - Prob. 23PCh. 44 - Prob. 24PCh. 44 - Prob. 25PCh. 44 - Prob. 26PCh. 44 - Prob. 27PCh. 44 - Prob. 28PCh. 44 - Prob. 29PCh. 44 - Prob. 31PCh. 44 - Prob. 32PCh. 44 - Prob. 33PCh. 44 - Prob. 34PCh. 44 - Prob. 35PCh. 44 - Prob. 36PCh. 44 - Prob. 37PCh. 44 - Prob. 38PCh. 44 - Prob. 39PCh. 44 - Prob. 40PCh. 44 - Prob. 41PCh. 44 - Prob. 42PCh. 44 - Prob. 43PCh. 44 - Prob. 44PCh. 44 - Prob. 45PCh. 44 - Prob. 46PCh. 44 - Prob. 47PCh. 44 - Prob. 48PCh. 44 - Prob. 49PCh. 44 - Prob. 50PCh. 44 - Prob. 51PCh. 44 - Prob. 52PCh. 44 - Prob. 53PCh. 44 - Prob. 54APCh. 44 - Prob. 55APCh. 44 - Prob. 56APCh. 44 - Prob. 57APCh. 44 - Prob. 58APCh. 44 - Prob. 59APCh. 44 - Prob. 60APCh. 44 - Prob. 61APCh. 44 - Prob. 62APCh. 44 - Prob. 63APCh. 44 - Prob. 64APCh. 44 - Prob. 65APCh. 44 - Prob. 66APCh. 44 - Prob. 67APCh. 44 - Prob. 68APCh. 44 - Prob. 69APCh. 44 - Prob. 70APCh. 44 - Prob. 71APCh. 44 - Prob. 72APCh. 44 - As part of his discovery of the neutron in 1932,...Ch. 44 - Prob. 74APCh. 44 - Prob. 75APCh. 44 - Prob. 76APCh. 44 - Prob. 77CPCh. 44 - Prob. 78CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College