Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 44, Problem 11P
(a)
To determine
The magnitude of the maximum Coulomb force on the alpha particle.
(b)
To determine
The magnitude of the acceleration of the alpha particle at the maximum force.
(c)
To determine
The magnitude of the potential energy of the system.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In the science fiction story "The little prince is an android" a second journey of the character from the novel by Antoine de Saint-Exupéry is proposed, in which
he visits a planet where respect for the ecosystem is paramount. They have developed a technology capable of storing the energy released in electrical storms
where 92 lightning strikes are produced every second. In a simplified way, lightning occurs when the potential difference between the cloud and the planet's
surface reaches at least 2.6 cross times 10 to the power of 7 volts. The electrical currents generated in lightning are about 3.4 cross times 10 to the power of 4
amperes on average.
Determine the average power of 92 lightning strikes produced with these values of potential difference and an electric current.
Select one:
O
8.8x 10¹1 W
9.6 × 10⁹ W
8.1 x 10¹3 W
7x 10¹ W
Hi, can anyone solve this with a detailed explanation.
The electron in a hydrogen atom is initially at a distance 2.12 Å from the proton, and then moves to a distance 0.529 Å from the proton.
(a) Calculate the change in the force between the proton and the electron.
(b) Calculate the change in the potential energy between the proton and the electron.
(c) Calculate the change in the velocity of the electron.
The potential energy of a particle in a field has the form U=ar2−br,where a and b are positive numbers, r is the distance from the centre of the field. Find the maximum possible value of the attractive force.
Chapter 44 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 44.1 - Prob. 44.1QQCh. 44.5 - Prob. 44.3QQCh. 44.5 - Which of the following is the correct daughter...Ch. 44 - Prob. 1OQCh. 44 - Prob. 2OQCh. 44 - Prob. 3OQCh. 44 - Prob. 4OQCh. 44 - Prob. 5OQCh. 44 - Prob. 6OQCh. 44 - Prob. 7OQ
Ch. 44 - Prob. 8OQCh. 44 - Prob. 9OQCh. 44 - Prob. 10OQCh. 44 - Prob. 11OQCh. 44 - Prob. 12OQCh. 44 - Prob. 13OQCh. 44 - Prob. 1CQCh. 44 - Prob. 2CQCh. 44 - Prob. 3CQCh. 44 - Prob. 4CQCh. 44 - Prob. 5CQCh. 44 - Prob. 6CQCh. 44 - Prob. 7CQCh. 44 - Prob. 8CQCh. 44 - Prob. 9CQCh. 44 - Prob. 10CQCh. 44 - Prob. 11CQCh. 44 - Prob. 12CQCh. 44 - Prob. 13CQCh. 44 - Prob. 14CQCh. 44 - Prob. 15CQCh. 44 - Prob. 16CQCh. 44 - Prob. 17CQCh. 44 - Prob. 1PCh. 44 - Prob. 2PCh. 44 - Prob. 3PCh. 44 - Prob. 4PCh. 44 - Prob. 5PCh. 44 - Prob. 6PCh. 44 - Prob. 7PCh. 44 - Prob. 8PCh. 44 - Prob. 9PCh. 44 - Prob. 10PCh. 44 - Prob. 11PCh. 44 - Prob. 12PCh. 44 - Prob. 13PCh. 44 - Prob. 14PCh. 44 - Prob. 15PCh. 44 - Prob. 16PCh. 44 - Prob. 17PCh. 44 - Prob. 18PCh. 44 - Prob. 19PCh. 44 - Prob. 20PCh. 44 - Prob. 21PCh. 44 - Prob. 22PCh. 44 - Prob. 23PCh. 44 - Prob. 24PCh. 44 - Prob. 25PCh. 44 - Prob. 26PCh. 44 - Prob. 27PCh. 44 - Prob. 28PCh. 44 - Prob. 29PCh. 44 - Prob. 31PCh. 44 - Prob. 32PCh. 44 - Prob. 33PCh. 44 - Prob. 34PCh. 44 - Prob. 35PCh. 44 - Prob. 36PCh. 44 - Prob. 37PCh. 44 - Prob. 38PCh. 44 - Prob. 39PCh. 44 - Prob. 40PCh. 44 - Prob. 41PCh. 44 - Prob. 42PCh. 44 - Prob. 43PCh. 44 - Prob. 44PCh. 44 - Prob. 45PCh. 44 - Prob. 46PCh. 44 - Prob. 47PCh. 44 - Prob. 48PCh. 44 - Prob. 49PCh. 44 - Prob. 50PCh. 44 - Prob. 51PCh. 44 - Prob. 52PCh. 44 - Prob. 53PCh. 44 - Prob. 54APCh. 44 - Prob. 55APCh. 44 - Prob. 56APCh. 44 - Prob. 57APCh. 44 - Prob. 58APCh. 44 - Prob. 59APCh. 44 - Prob. 60APCh. 44 - Prob. 61APCh. 44 - Prob. 62APCh. 44 - Prob. 63APCh. 44 - Prob. 64APCh. 44 - Prob. 65APCh. 44 - Prob. 66APCh. 44 - Prob. 67APCh. 44 - Prob. 68APCh. 44 - Prob. 69APCh. 44 - Prob. 70APCh. 44 - Prob. 71APCh. 44 - Prob. 72APCh. 44 - As part of his discovery of the neutron in 1932,...Ch. 44 - Prob. 74APCh. 44 - Prob. 75APCh. 44 - Prob. 76APCh. 44 - Prob. 77CPCh. 44 - Prob. 78CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Can I have help with this problem?arrow_forward1)What is the electric potential due to the nucleus of hydrogen at a distance of 6.50×10-11 m? Assume the potential is equal to zero as r→∞. (Express your answer to three significant figures.)arrow_forward= Two point particles have equal charge q 1100 esu and different masses, m₁ = 25 gr and m₂ = 65 gr, are confined to move freely along the x axis. Note that esu is the unit of electric charge when working with units of mass in grams and distance in centimeters. = The electrical force between the particles is a repelling force which is derived from the potential energy function U(x1, x2) of the two-particles system. U(x1, x2) depends only on the distance of the particles and is given by U(x1, x2) - q2 | x2 − x1| At t = 0) the particle of mass m2 is at rest at the origin (x2 = 0), and the particle of mass m₁ begins to move from point x1 = 76 cm with velocity vo 134 cm/s towards particle m2. = a. What is the location of the center of mass (in cm) at t - 0? -21. b. What is the location of the center of mass (in cm) at t = 0.4 sec? -6.2 c. What will be the minimum distance (in cm) between the two particles? 6.46 X d. Once the distance between the particles is minimal, what will be the speed…arrow_forward
- Three electrons are located at the vertices of an equilateral triangle with side lengths of 4 cm. The electrons at the base of the triangle are stuck in place but the electron at the top is free to move. The mass of an electron is 9.109 *10-31 kg. Calculate the total potential energy of this system.arrow_forward(0) 7:18 O 3.85 x 10-14 N O 6.83 x 10-2 N QUESTION 1 A particular nucleus of the element plutonium contains 94 protons and 150 neutrons. What is the magnitude of the force from the nucleus on a single electron that is at a distance of 0.563 x 10-12 mr from the plutonium nucleus? O 4.27 x 1015 N O 6.42 N O 1.09 x 10-1 N QUESTION ? Photo M Click Save and Submit to save and submit. Click Save All Answers to save all answers. -0- Done 1arrow_forwardAn electron has an initial speed of 1.00x106 m/s. What potential difference (sign and magnitude) is required to bring the electron to rest? What potential difference is required to reduce the kinetic energy of the electron by a factor of 3 compared with the initial value? What potential difference is required to reduce the speed of the electron by a factor of 3 compared with the initial speed?arrow_forward
- To form a hydrogen atom, a proton is fixed at a point and an electron is brought from far away to a distance of 0.529×10−10m, the average distance between proton and electron in a hydrogen atom. How much work is done?arrow_forwardIn the Bohr model of the hydrogen (H) atom, the electron moves on a circular path (orbit) around the nucleus,which consists of a single proton. In the ground state of H (the lowest energy level of H), the electron orbitsthe proton at a distance of 0.529 A (or 5.29 × 10^−11 m; 1 A˚ = 10^−10 m) with a linear speed of 2.19 × 10^6 m/s.(a) What is the angular speed of the electron?(b) How many orbits around the proton does the electron make each second?(c) What is the electron’s centripetal acceleration?arrow_forwardTwo protons and an alpha particle (a=He nucleus, 2p+,2n0)are held at rest at the corners of an equilateral triangle whose side length is 9.20x10-10 . The particles are released and move apart. What is their total energy when they are far apart?arrow_forward
- What potential difference is needed to give a helium nucleus (Q=3.2×10−19CQ=3.2×10^-19C) 124 keV of kinetic energy? Express your answer using two significant figures.arrow_forwardThe figure below shows a charged particle, with a charge of q = +39.0 nC, that moves a distance of d = 0.190 m from point A to point B in the presence of a uniform electric field E of magnitude 255 N/C, pointing right. (a) What is the magnitude (in N) and direction of the electric force on the particle? (b) What is the work (in J) done on the particle by the electric force as it moves from A to B? (c) What is the change of the electric potential energy (in J) as the particle moves from A to B? (The system consists of the particle and all its surroundings.) PEB − PEA = (d) What is the potential difference (in V) between A and B? VB − VA =arrow_forwardThis transmission electron microscope (TEM) image of coronavirus can be taken using a beam of electrons accelerated from rest through a potential difference of 25 kV. What is the final speed of the electrons? Provide the answer: . x 108 m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY