In each of Problems 1 through 26: (a) Find the general solution in terms of real functions. (b) From the roots of the characteristics equation, determine whether each critical point of the corresponding dynamical system is asymptotically stable, stable, or unstable, and classify it as to type. (c) Use the general solution obtained in part (a) to find a two parameter family of trajectories X = x 1 i + x 2 j = y i + y ' j of the corresponding dynamical system. Then sketch by hand, or use a computer, to draw a phase portrait, including any straight-line orbits, from this family of trajectories. 6 y ' ' − y ' − y = 0
In each of Problems 1 through 26: (a) Find the general solution in terms of real functions. (b) From the roots of the characteristics equation, determine whether each critical point of the corresponding dynamical system is asymptotically stable, stable, or unstable, and classify it as to type. (c) Use the general solution obtained in part (a) to find a two parameter family of trajectories X = x 1 i + x 2 j = y i + y ' j of the corresponding dynamical system. Then sketch by hand, or use a computer, to draw a phase portrait, including any straight-line orbits, from this family of trajectories. 6 y ' ' − y ' − y = 0
(a) Find the general solution in terms of real functions.
(b) From the roots of the characteristics equation, determine whether each critical point of the corresponding dynamical system is asymptotically stable, stable, or unstable, and classify it as to type.
(c) Use the general solution obtained in part (a) to find a two parameter family of trajectories
X
=
x
1
i
+
x
2
j
=
y
i
+
y
'
j
of the corresponding dynamical system. Then sketch by hand, or use a computer, to draw a phase portrait, including any straight-line orbits, from this family of trajectories.
Match the division problem on the left with the correct quotient on the left.
Note that the denominators of the reminders are omitted and replaced with R.
1) (k3-10k²+k+1) ÷ (k − 1)
2) (k4-4k-28k45k+26)+(k+7)
3) (20k+222-7k+7)+(5k-2)
4) (3+63-15k +32k-25)+(k+4)
5) (317k 13) ÷ (k+4)
-
6) (k-k+8k+5)+(k+1)
7) (4-12k+6) + (k-3)
8) (3k+4k3 + 15k + 10) ÷ (3k+4)
A) 3k3-6k29k - 4
B) 4k2
+
6
R
7
C)²-9k-8- R
D) 4k2+6x+1+
E)
10
Elk³-5-12
R
9
F) k² - 4k R
9
R
G) k3-3k2-7k+4
H) k³-k²+8
-
3
R
-
R
9
R
1. Determine whether the following sets are subspaces of $\mathbb{R}^3$ under the operations of addition and scalar multiplication defined on $\mathbb{R}^3$. Justify your answers.(a) $W_1=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: a_1=3 a_2\right.$ and $\left.a_3=\mid a_2\right\}$(b) $W_2=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: a_1=a_3+2\right\}$(c) $W_3=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: 2 a_1-7 a_2+a_3=0\right\}$(d) $W_4=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: a_1-4 a_2-a_3=0\right\}$(e) $W_s=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: a_1+2 a_2-3 a_3=1\right\}$(f) $W_6=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: 5 a_1^2-3 a_2^2+6 a_3^2=0\right\}$
The annual aggregate claim amount of an insurer follows a compound Poisson distribution with
parameter 1,000. Individual claim amounts follow a Gamma distribution with shape parameter
a = 750 and rate parameter λ = 0.25.
1. Generate 20,000 simulated aggregate claim values for the insurer, using a random
number generator seed of 955.Display the first five simulated claim values in your
answer script using the R function head().
2. Plot the empirical density function of the simulated aggregate claim values from
Question 1, setting the x-axis range from 2,600,000 to 3,300,000 and the y-axis range
from 0 to 0.0000045.
3. Suggest a suitable distribution, including its parameters, that approximates the
simulated aggregate claim values from Question 1.
4. Generate 20,000 values from your suggested distribution in Question 3 using a random
number generator seed of 955. Use the R function head() to display the first five
generated values in your answer script.
5. Plot the empirical density…
Chapter 4 Solutions
Differential Equations: An Introduction To Modern Methods And Applications 3e Binder Ready Version + Wileyplus Registration Card
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.