3. Consider the following theorem: Theorem: If n is an odd integer, then n³ is an odd integer. Note: There is an implicit universal quantifier for this theorem. Technically we could write: For all integers n, if n is an odd integer, then n³ is an odd integer. (a) Explore the statement by constructing at least three examples that satisfy the hypothesis, one of which uses a negative value. Verify the conclusion is true for each example. You do not need to write your examples formally, but your work should be easy to follow. (b) Pick one of your examples from part (a) and complete the following sentence frame: One example that verifies the theorem is when n = We see the hypothesis is true because and the conclusion is true because (c) Use the definition of odd to construct a know-show table that outlines the proof of the theorem. You do not need to write a proof at this time.

Elements Of Modern Algebra
8th Edition
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Gilbert, Linda, Jimmie
Chapter3: Groups
Section3.2: Properties Of Group Elements
Problem 30E: 30. Prove statement of Theorem : for all integers .
icon
Related questions
Question
3. Consider the following theorem:
Theorem: If n is an odd integer, then n³ is an odd integer.
Note: There is an implicit universal quantifier for this theorem. Technically we could write:
For all integers n, if n is an odd integer, then n³ is an odd integer.
(a) Explore the statement by constructing at least three examples that satisfy the hypothesis,
one of which uses a negative value. Verify the conclusion is true for each example. You
do not need to write your examples formally, but your work should be easy to follow.
(b) Pick one of your examples from part (a) and complete the following sentence frame:
One example that verifies the theorem is when n =
We see the hypothesis is
true because
and the conclusion is true because
(c) Use the definition of odd to construct a know-show table that outlines the proof of the
theorem. You do not need to write a proof at this time.
Transcribed Image Text:3. Consider the following theorem: Theorem: If n is an odd integer, then n³ is an odd integer. Note: There is an implicit universal quantifier for this theorem. Technically we could write: For all integers n, if n is an odd integer, then n³ is an odd integer. (a) Explore the statement by constructing at least three examples that satisfy the hypothesis, one of which uses a negative value. Verify the conclusion is true for each example. You do not need to write your examples formally, but your work should be easy to follow. (b) Pick one of your examples from part (a) and complete the following sentence frame: One example that verifies the theorem is when n = We see the hypothesis is true because and the conclusion is true because (c) Use the definition of odd to construct a know-show table that outlines the proof of the theorem. You do not need to write a proof at this time.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer