Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 43, Problem 62AP
(a)
To determine
The equilibrium position of the
(b)
To determine
The depth
(c)
To determine
The maximum force toward the negative
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
247. Consider a particle moving in the region x> 0 under the influence of the potential
a
+
а,
U(x)
%3D
where U, = 1 J and a = 2 m. Plot the potential, find the equilibrium points, and
determine whether they are maxima or minima.
The density of a star measured from the center of a star is equal to Z. a is constant. find the gravitational potential and g as a function of r.
Consider the vector field F(x,y)=(4x^3y^2−2xy^3)i+(2x^4y−3x^2y^2+4y^3)
a. Find the potential function f(x,y).
b. Determine the work done by the vector field in moving a particle along a curve C from (1,2) to (3,1).
Chapter 43 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 43.1 - For each of the following atoms or molecules,...Ch. 43.2 - Prob. 43.2QQCh. 43.2 - Prob. 43.3QQCh. 43 - Prob. 1OQCh. 43 - Prob. 2OQCh. 43 - Prob. 3OQCh. 43 - Prob. 4OQCh. 43 - Prob. 5OQCh. 43 - Prob. 6OQCh. 43 - Prob. 7OQ
Ch. 43 - Prob. 1CQCh. 43 - Prob. 2CQCh. 43 - Prob. 3CQCh. 43 - Prob. 4CQCh. 43 - Prob. 5CQCh. 43 - Prob. 6CQCh. 43 - Prob. 7CQCh. 43 - Prob. 8CQCh. 43 - Discuss models for the different types of bonds...Ch. 43 - Prob. 10CQCh. 43 - Prob. 1PCh. 43 - Prob. 2PCh. 43 - Prob. 3PCh. 43 - Prob. 4PCh. 43 - Prob. 5PCh. 43 - Prob. 6PCh. 43 - Prob. 7PCh. 43 - Prob. 8PCh. 43 - Prob. 9PCh. 43 - Prob. 10PCh. 43 - Prob. 12PCh. 43 - Prob. 13PCh. 43 - Prob. 14PCh. 43 - Prob. 15PCh. 43 - Prob. 16PCh. 43 - The nuclei of the O2 molecule are separated by a...Ch. 43 - Prob. 18PCh. 43 - Prob. 19PCh. 43 - Prob. 20PCh. 43 - Prob. 21PCh. 43 - Prob. 22PCh. 43 - Prob. 23PCh. 43 - Prob. 24PCh. 43 - Prob. 25PCh. 43 - Prob. 27PCh. 43 - Prob. 28PCh. 43 - Prob. 29PCh. 43 - Prob. 30PCh. 43 - Prob. 31PCh. 43 - Prob. 32PCh. 43 - Prob. 33PCh. 43 - Prob. 34PCh. 43 - Prob. 35PCh. 43 - Prob. 36PCh. 43 - Prob. 37PCh. 43 - Prob. 38PCh. 43 - Prob. 39PCh. 43 - Prob. 40PCh. 43 - Prob. 41PCh. 43 - Prob. 42PCh. 43 - Prob. 43PCh. 43 - Prob. 44PCh. 43 - Prob. 45PCh. 43 - Prob. 46PCh. 43 - Prob. 47PCh. 43 - Prob. 49PCh. 43 - Prob. 50PCh. 43 - Prob. 51PCh. 43 - A direct and relatively simple demonstration of...Ch. 43 - Prob. 53PCh. 43 - Prob. 54APCh. 43 - Prob. 55APCh. 43 - Prob. 56APCh. 43 - Prob. 57APCh. 43 - Prob. 58APCh. 43 - Prob. 59APCh. 43 - Prob. 61APCh. 43 - Prob. 62APCh. 43 - Prob. 63CPCh. 43 - As an alternative to Equation 43.1, another useful...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A system consists of five particles. How many terms appear in the expression for the total gravitational potential energy of the system? (a) 4 (b) 5 (c) 10 (d) 20 (e) 25arrow_forwardConsider a particle moving in the region x > 0 under the influence of the potential where U0 = 1 J and α = 2 m. Plot the potential, find the equilibrium points, and determine whether they are maxima or minima.arrow_forwardA small object is attached to two springs of the same length l, but with different spring constants k1 and k2 as shown in Figure P9.31. Initially, both springs are relaxed. The object is then displaced straight along the x axis from xi to xf. Find an expression for the work done by the springs on the object.arrow_forward
- A small particle of mass m is pulled to the top of a friction less half-cylinder (of radius R) by a light cord that passes over the top of the cylinder as illustrated in Figure P7.15. (a) Assuming the particle moves at a constant speed, show that F = mg cos . Note: If the particle moves at constant speed, the component of its acceleration tangent to the cylinder must be zero at all times. (b) By directly integrating W=Fdr, find the work done in moving the particle at constant speed from the bottom to the top of the hall-cylinder. Figure P7.15arrow_forwardA particle moves in the xy plane (Fig. P9.30) from the origin to a point having coordinates x = 7.00 m and y = 4.00 m under the influence of a force given by F=3y2+x. a. What is the work done on the particle by the force F if it moves along path 1 (shown in red)? b. What is the work done on the particle by the force F if it moves along path 2 (shown in blue)? c. What is the work done on the particle by the force F if it moves along path 3 (shown in green)? d. Is the force F conservative or nonconservative? Explain. FIGURE P9.30 In each case, the work is found using the integral of Fdr along the path (Equation 9.21). W=rtrfFdr=rtrf(Fxdx+Fydy+Fzdz) (a) The work done along path 1, we first need to integrate along dr=dxi from (0,0) to (7,0) and then along dr=dyj from (7,0) to (7,4): W1=x=0;y=0x=7;y=0(3y2i+xj)(dxi)+x=7;y=0x=7;y=4(3y2i+xj)(dyj) Performing the dot products, we get W1=x=0;y=0x=7;y=03y2dx+x=7;y=0x=7;y=4xdy Along the first part of this path, y = 0 therefore the first integral equals zero. For the second integral, x is constant and can be pulled out of the integral, and we can evaluate dy. W1=0+x=7;y=0x=7;y=4xdy=xy|x=7;y=0x=7;y=4=28J (b) The work done along path 2 is along dr=dyj from (0,0) to (0,4) and then along dr=dxi from (0,4) to (7,4): W2=x=0;y=0x=0;y=4(3y2i+xj)(dyj)+x=0;y=4x=7;y=4(3y2i+xj)(dyi) Performing the dot product, we get: W2=x=0;y=0x=0;y=4xdy+x=0;y=4x=7;y=43y2dx Along the first part of this path, x = 0. Therefore, the first integral equals zero. For the second integral, y is constant and can be pulled out of the integral, and we can evaluate dx. W2=0+3y2x|x=0;y=4x=7;y=4=336J (c) To find the work along the third path, we first write the expression for the work integral. W=rtrfFdr=rtrf(Fxdx+Fydy+Fzdz)W=rtrf(3y2dx+xdy)(1) At first glance, this appears quite simple, but we cant integrate xdy=xy like we might have above because the value of x changes as we vary y (i.e., x is a function of y.) [In parts (a) and (b), on a straight horizontal or vertical line, only x or y changes]. One approach is to parameterize both x and y as a function of another variable, say t, and write each integral in terms of only x or y. Constraining dr to be along the desired line, we can relate dx and dy: tan=dydxdy=tandxanddx=dytan(2) Now, use equation (2) in (1) to express each integral in terms of only one variable. W=x=0;y=0x=7;y=43y2dx+x=0;y=0x=7;y=4xdyW=y=0y=43y2dytan+x=0x=7xtandx We can determine the tangent of the angle, which is constant (the angle is the angle of the line with respect to the horizontal). tan=4.007.00=0.570 Insert the value of the tangent and solve the integrals. W=30.570y33|y=0y=4+0.570x22|x=0x=7W=112+14=126J (d) Since the work done is not path-independent, this is non-conservative force. Figure P9.30ANSarrow_forwardA train moves along the tracks at a constant speed u. A woman on the train throws a ball of mass m straight ahead with a speed υ with respect to herself. (a) What is the kinetic energy gain of the ball as measured by a person on the train? (b) by a person standing by the railroad track? (c) How much work is done by the woman throwing he ball and (d) by the train?arrow_forward
- A block of mass 200 g is attached at the end of a massless spring of spring constant 50 N/m. The other end of the spring is attached to the ceiling and the mass is released at a height considered to be where the gravitational potential energy is zero. (a) What is the net potential energy of the block at the instant the block is at the lowest point? (b) What is the net potential energy of the block at the midpoint of its descent? (c) What is the speed of the block at the midpoint of its descent?arrow_forward07 Prove that the force F = 2ex(- yzi + zj + yk) follows from a function potential energy and to determine it.arrow_forward5. Consider a particle moving under the influence of the potential U(x) = U. a + - a where U>0 and a>0. Plot the potential, find the equilibrium points, and determine whether they are maxima or minima.arrow_forward
- (a) Tony Hawco (m362 kg), a Newfoundland based skater decides to have his first ride on the new halfpipe at Bannerman Park. We will use the lowest point in the halfpipe as our reference point h=0. Vo=2.00 m/s R=3.00 m V,=7.00 m/s h=0 B. A.arrow_forwardThe class I'm taking is physics for scientists and engineers! I am completely stuck. Need help. I have attached the problem. Please view attachment before answering. If you can please explain your answer so I can fully understand. Thank you!arrow_forwardV7arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY