Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 43, Problem 32P
To determine
The number of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Assuming that there are 1.5 free electrons per gold atom. The electrical conductivity
and density for Au are 4.3 x 10' (N-m)1 and 19.32 g/cm3, respectively.
(a) Calculate the number of free electrons per cubic meter for gold
(b) Compute the electron mobility for gold.
Copper, a monovalent metal, has molar mass 63.54 g/mol and density 8.96 g/cm3. What is the number density n of conduction electrons in copper?
Calculatea) the drift mobility b) the mean scattering time
Chapter 43 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 43.1 - For each of the following atoms or molecules,...Ch. 43.2 - Prob. 43.2QQCh. 43.2 - Prob. 43.3QQCh. 43 - Prob. 1OQCh. 43 - Prob. 2OQCh. 43 - Prob. 3OQCh. 43 - Prob. 4OQCh. 43 - Prob. 5OQCh. 43 - Prob. 6OQCh. 43 - Prob. 7OQ
Ch. 43 - Prob. 1CQCh. 43 - Prob. 2CQCh. 43 - Prob. 3CQCh. 43 - Prob. 4CQCh. 43 - Prob. 5CQCh. 43 - Prob. 6CQCh. 43 - Prob. 7CQCh. 43 - Prob. 8CQCh. 43 - Discuss models for the different types of bonds...Ch. 43 - Prob. 10CQCh. 43 - Prob. 1PCh. 43 - Prob. 2PCh. 43 - Prob. 3PCh. 43 - Prob. 4PCh. 43 - Prob. 5PCh. 43 - Prob. 6PCh. 43 - Prob. 7PCh. 43 - Prob. 8PCh. 43 - Prob. 9PCh. 43 - Prob. 10PCh. 43 - Prob. 12PCh. 43 - Prob. 13PCh. 43 - Prob. 14PCh. 43 - Prob. 15PCh. 43 - Prob. 16PCh. 43 - The nuclei of the O2 molecule are separated by a...Ch. 43 - Prob. 18PCh. 43 - Prob. 19PCh. 43 - Prob. 20PCh. 43 - Prob. 21PCh. 43 - Prob. 22PCh. 43 - Prob. 23PCh. 43 - Prob. 24PCh. 43 - Prob. 25PCh. 43 - Prob. 27PCh. 43 - Prob. 28PCh. 43 - Prob. 29PCh. 43 - Prob. 30PCh. 43 - Prob. 31PCh. 43 - Prob. 32PCh. 43 - Prob. 33PCh. 43 - Prob. 34PCh. 43 - Prob. 35PCh. 43 - Prob. 36PCh. 43 - Prob. 37PCh. 43 - Prob. 38PCh. 43 - Prob. 39PCh. 43 - Prob. 40PCh. 43 - Prob. 41PCh. 43 - Prob. 42PCh. 43 - Prob. 43PCh. 43 - Prob. 44PCh. 43 - Prob. 45PCh. 43 - Prob. 46PCh. 43 - Prob. 47PCh. 43 - Prob. 49PCh. 43 - Prob. 50PCh. 43 - Prob. 51PCh. 43 - A direct and relatively simple demonstration of...Ch. 43 - Prob. 53PCh. 43 - Prob. 54APCh. 43 - Prob. 55APCh. 43 - Prob. 56APCh. 43 - Prob. 57APCh. 43 - Prob. 58APCh. 43 - Prob. 59APCh. 43 - Prob. 61APCh. 43 - Prob. 62APCh. 43 - Prob. 63CPCh. 43 - As an alternative to Equation 43.1, another useful...
Knowledge Booster
Similar questions
- Assuming that there are 1.5 free electrons per gold atom. The electrical conductivity and density for Au are 4.3 x 10' (0-m)* and 19.32 g/cm?, respectively. (a) Calculate the number of free electrons per cubic meter for gold (b) Compute the electron mobility for gold.arrow_forwardA conductive wire has a conductivity of ( 0.649 × 10^-8) at room temperature are ( 5.8 x 1028) conduction electron/m.calculate the mobility,resistivity and relaxation time of electronsarrow_forwardThe mean speed of conduction electron in Cu is electrons1.5 × 106 ms-1 and the frequency of vibration of the copper atoms at room temperature is about 4 × 1012 s-1. Estimate the drift mobility of electrons and the conductivity of Cu. The density of Cu is 8.96 g cm-3 and the atomic mass is 63.56 g mol-1.arrow_forward
- Calculate the number density (number per unit volume) for (a) molecules of oxygen gas at 0.0°C and 1.0 atm pressure and (b) conduction electrons in copper. (c) What is the ratio of the latter to the former? What is the average distance between (d) the oxygen molecules and (e) the conduction electrons, assuming this distance is the edge length of a cube with a volume equal to the available volume per particle (molecule or electron)?arrow_forwardIn solid KCI the smallest distance between the centers of a. potassium ion and a chloride ion is 314 pm. Calculate the length of the edge of the unit cell and the density of KCI, assuming it has the same structure as sodium chloride.arrow_forward6.31 A spherical shell has inner and outer radii a and b, respectively. Assume that the shell has a uniform conductivity o and that it has copper electrodes plated on the inner and outer surfaces. Show that %3D 477O aarrow_forward
- Aluminum has a density of 2.70 x 103 kg/m3 at a temperature of 293 K, and its molar mass is 26.98 g. (a) Compute the number of aluminum atoms per unit volume at that temperature. (b) Use the fact that EF 11.63 eV for aluminum at 293 K to fi nd the number density of free electrons. (c) Combine your results from (a) and (b) to estimate the number of conduction electrons per atom—the valence number for aluminumarrow_forwardWhat is the number density of conduction electrons in gold, which is a monovalent metal? Use the molar mass and density provided in Appendix Farrow_forwardSilver has exactly one conduction electron per atom. (a) Use the density of silver (1.05 x10^4 kg/m^3) and the mass of 107.87 g/mol to find the density of conduction electrons insilver. (b) At what temperature is A = 1 for silver (where A is the normalization constantin the Maxwell-Boltzmann distribution)? (c) At what temperature is A = 10^-3?arrow_forward
- Since the Fermi energy level of zinc is EF = 9.47 eV, what is the number of electrons per unit energy per unit volume at this energy level? Since the resistivity of zinc is 5.90 x 10^-8 ohm.m, calculate the average time interval between collisions of electrons.arrow_forwardAt what pressure, in atmospheres, would the number of molecules per unit volume in an ideal gas be equal to the number density of the conduction electrons in copper, with both gas and copper at temperature T =300 K?arrow_forwardGiven the fermi energy and electron concentration 7.00 eV and 8.0×10²6 e¯/m³ respectively of a Copper of resistivity 1.7×108 2-m, calculate the mean free path. (a) 3780 nm (b) 5000 nm (c) 4100 nm (d) 7000 nmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning