Concept explainers
The graph that shows the time that the runner has been running as a function of the distance she has travelled
Explanation of Solution
Given information:
The graph that shows the distance a runner has travelled as a function of the amount of time she has been running
Graph:
First find the equation of the given graph.
From the graph, use points
Equation of a line is given by
Put
To draw the graph that shows the distance a runner has travelled as a function of the amount of time she has been running, exchange
So, equation becomes
Now draw the graph of equation
First find points that can be used to plot the graph of
At
At
At
At
At
Plot points
Chapter 4 Solutions
EP ALGEBRA 1-ETEXT ACCESS
Additional Math Textbook Solutions
Intro Stats, Books a la Carte Edition (5th Edition)
Elementary Statistics (13th Edition)
Elementary Statistics
A First Course in Probability (10th Edition)
Thinking Mathematically (6th Edition)
Algebra and Trigonometry (6th Edition)
- 1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k components, where k is the greatest common divisor of {n, r,s}.arrow_forward1.2.20. (!) Let u be a cut-vertex of a simple graph G. Prove that G - v is connected. עarrow_forward1.2.12. (-) Convert the proof at 1.2.32 to an procedure for finding an Eulerian circuit in a connected even graph.arrow_forward
- 1.2.16. Let e be an edge appearing an odd number of times in a closed walk W. Prove that W contains the edges of a cycle through c.arrow_forward1.2.11. (−) Prove or disprove: If G is an Eulerian graph with edges e, f that share vertex, then G has an Eulerian circuit in which e, f appear consecutively. aarrow_forwardBy forming the augmented matrix corresponding to this system of equations and usingGaussian elimination, find the values of t and u that imply the system:(i) is inconsistent.(ii) has infinitely many solutions.(iii) has a unique solutiona=2 b=1arrow_forward
- 1.2.6. (-) In the graph below (the paw), find all the maximal paths, maximal cliques, and maximal independent sets. Also find all the maximum paths, maximum cliques, and maximum independent sets.arrow_forward1.2.13. Alternative proofs that every u, v-walk contains a u, v-path (Lemma 1.2.5). a) (ordinary induction) Given that every walk of length 1-1 contains a path from its first vertex to its last, prove that every walk of length / also satisfies this. b) (extremality) Given a u, v-walk W, consider a shortest u, u-walk contained in W.arrow_forward1.2.10. (-) Prove or disprove: a) Every Eulerian bipartite graph has an even number of edges. b) Every Eulerian simple graph with an even number of vertices has an even num- ber of edges.arrow_forward
- 1) Calculate 49(B-1)2+7B−1AT+7ATB−1+(AT)2 2)Find a matrix C such that (B − 2C)-1=A 3) Find a non-diagonal matrix E ̸= B such that det(AB) = det(AE)arrow_forward1.2.4. (-) Let G be a graph. For v € V(G) and e = E(G), describe the adjacency and incidence matrices of G-v and G-e in terms of the corresponding matrices for G.arrow_forward1.2.6. (-) In the graph below (the paw), find all the maximal paths, maximal cliques, and maximal independent sets. Also find all the maximum paths, maximum cliques, and maximum independent sets.arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education