a.
To graph: showing the height with respect to time.
a.
Explanation of Solution
Given:
A person starts swinging from the ground, then attains a maximum height and then slows down until the swing stops.
Concept used:
Given example is of a damped oscillation where the swing is oscillating between its amplitude and due to damping force, its amplitude is continuously decreasing.
For a simple oscillation without damping the equation is
But as stated the height of the swing will first increase meaning that the amplitude will increase and then decrease, thus there will be 2 parts of the graph, one with increasing amplitude and one with decreasing amplitude.
The equation of graph for the part when swing starts from the ground and increases its amplitude will be
Here it must be noted that the power of eand value of
Thus the graph formed is given below.
Graph:
Interpretation:
The height of the swing gradually increases from 0 up to maximum height while passing through the mean position every time.
Here height at 0 doesn’t mean ground level but the mean height from the ground
Now, for the second part of the graph where the height of the swing decreases gradually until it stop, the equation will have cosine function as it starts from maximum value and ends at 0
So the equation for this graph will be
Conclusion:
The height of swing will decrease gradually because of the damped forces acting such as friction. Eventually the height becomes zero and the swing stops.
b.
To find: the change in the graph if instead of slowing down the person jumps from the swing.
b.
Answer to Problem 3P
A parabola will be formed
Explanation of Solution
Given:
A person is swingfrom any point from him, and jumps to land on the ground.
Concept used:
When the person is swinging, he already has some momentum because of the motion of the swing.
If he jumps from the swing at any point he will follow a parabolic path because of his velocity in horizontal direction and due to the gravitational force in vertical direction
Due to the momentum the person will be launched into air from the swing and he will follow a parabolic path.
Graph:
The 1st part of graph will be similar as there are no changes while speeding up but the second part of graph will be different as given below.
Conclusion:
If the person jumps from the swing mid-air instead of slowing down, he follows a trajectory of a parabola.
Chapter 4 Solutions
EP ALGEBRA 1-ETEXT ACCESS
Additional Math Textbook Solutions
Algebra and Trigonometry (6th Edition)
College Algebra with Modeling & Visualization (5th Edition)
Thinking Mathematically (6th Edition)
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
- 26 5G II. 8:44 ☐ myportal.aum.edu.kw ENGLISH العربية RH Problem 2 [20 points]: Find the Reduced Row 1 4 7 Echelon Form of the matrix -1 0-1 3 04 Problem 3 [30 points]: Consider the following linear system: x+2y=1 -2x+2my=0 a) Write the linear system in the matrix form: A.X=b. b) For m=1, find the inverse of A, using the definition of the inverse. In this case, deduce the solution of the system. c) Use the definition of the inverse to find the values of m for which A is not invertible. 7 A▾ III G B I Ff▾ < ↑arrow_forwardI want a mathematical relationship with all the details, not explanations and definitionsarrow_forward4 sinx cos2x+4 cos x sin2x-1=0arrow_forward
- For the matrix A, find (if possible) a nonsingular matrix P such that P-1AP is diagonal. (If not possible, enter IMPOSSIBLE.) 6 -2 -[47] A = -3 1 P = Verify that P-1AP is a diagonal matrix with the eigenvalues on the main diagonal. P-1AP =arrow_forward(e) Without using a membership table, show that (A N B) U (A N B) = A. State all the rules used.arrow_forwardThe function r has vertical asymptotes x =____________ (smaller value) and x = __________ (larger value)arrow_forward
- Problem 1. 1.1. In each of the below, find a complete list of subgroups of the group G and write down their orders. a) The group G = Z/48Z b) The group G of rotations in D14. c) The group G = Z13 of 13-th roots of unity in C. 1.2. Find all elements x of the group G from 1.1 b) which generate G. 1.3. Let H = [[20]) ℃ Z/48Z. Using only order, determine which of the subgroups from your solution to 1.1 a) H coincides with.arrow_forwardmy teacher told me the answer was 4a⁷b⁶ because of the product of a power how can I tell the truth us there any laws in math please provide the law to correct her tyarrow_forwarda=1 b=41)Find the vector and parametric scalar equations of the line L. Show that Q does not lieon L. 2)Without performing any numerical calculations, express d in terms of sin(θ) and |P Q| andhence show that d = |P Q × v(v with a hat)|. Proceed to use your points P and Q and the vector v(hat) to find d. 3)Find the point R such that PR =(P Q · v(hat)/|v(hat)| 2⃗ ) * v(hat). Confirm that R lies on the line L. Interpret the vector P R. Finally, verify that d = |RQ|.arrow_forward
- Directions: Use your knowledge of properties of quadratic equations to answer each question. Show all work and label your answers with appropriate units. Round any decimals to the nearest hundredths place. 1. The hypotenuse of a right triangle is 5 centimeters longer than one leg and 10 centimeters longer than the other leg. What are the dimensions of the triangle? 2. The profit of a cell phone manufacturer is found by the function y = -2x²+ 108x+75, where x is the price of the cell phone. At what price should the manufacturer sell the phone to maximize its profits? What will the maximum profit be? 3. A farmer wants to build a fence around a rectangular area of his farm with one side of the region against his barn. He has 76 feet of fencing to use for the three remaining sides. What dimensions will make the largest area for the region? 4. A 13-foot ladder is leaning against a building, forming a right triangle. The height where the ladder touches the building is 7 feet more than the…arrow_forwardConsider the linear system: x12x2ax3 - 3x1 + x2 3x3 -3x14x2+7x3 a) For what value of a we can not solve the above system using Cramer's Rule? a b) If we take a 3 what will be the value of x₁? x1 = == 4. =-7 ==arrow_forwardIf u and v are any elements in vector space V and u v is not in V then V is not closed under the operation . ○ True ○ Falsearrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education